<WA1/>
<AW1/>
2024

Context

The Foundations of React

Fulvio Corno
Luigi De Russis

e

W

g
E

A/ /

~

"‘
A 4

\ \ /4

A\ \ N\

~
E

\

\
S

4

{

Sort-of Globally Available Props (to avoid props drilling)

CONTEXT, useCoNTEXT HOOK

Applicazioni Web | - Web Applications | - 2023/2024

https://react.dev/learn/passing-data-deeply-

with-context

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

React Handbook, Chapter “Context API”

https://react.dev/learn/passing-data-deeply-with-context
https://react.dev/learn/passing-data-deeply-with-context

Context

Unidirectional information flow + ¢ Solution: the Context APl offers a
“global” set of props that are

“automatically” available to
lower components

— Without declaring them explicitly at
every level

Functional components =

Must pass every prop to the
component that needs it, and
sometimes it means “drilling through”
many components with several props * “Props teleporting”

ApplicazioniWeb | - Web Applications | - 2023/2024

Examples

* The current visual theme for the whole page (e.g., dark, light, ...)
— Needed by most visual components (towards the bottom of the tree)
— Not needed by any container component

* Logged in/logged out status (and basic user information)

— Needed to enable/disable large portions of the page
— Needed to provide user info in various parts of the page (e.g., avatar)
— Needed to call remote APIs with user-related queries

e Shared data
* Multi-language support

Applicazioni Web | - Web Applications | - 2023/2024 H

ExContext

Three Context Ingredients <ExContext .Provider>

<ExContext.Consumer>

* Context definition

— const ExContext = React.createContext()

— Defines a context object and stores it into the ExContext reference
e Context provider

— <ExContext.Provider value=...>component

— Injects the context value into all nested components

e Context consumer (two equivalent techniques)

— <ExContext.Consumer>

e Renders a function that receives the context current value as a parameter
— useContext(ExContext)

* Uses a hook to access the context current value

Applicazioni Web | - Web Applications | - 2023/2024 E

ExContext

CO nteXt Defl n |t|O n <ExContext.Provider>

<ExContext.Consumer>

const ExContext = React.createContext(defaultValue)

* Creates a new Context object
— Contains 2 properties: ExContext.Provider and ExContext.Consumer

— Represents the value of one state object

* May be a complex object with many properties/functions
— The ExContext identifier is used in value propagation
 Components may subscribe (consume) to this context

— The provided value comes from the closest Provider ancestor
 If no provider is found, the defaultValue is used
* In all other cases, defaultValueis ignored

Applicazioni Web | - Web Applications | - 2023/2024

Example

e Create a (very) simple multi-
language application

Welcome to a simple multilanguage app!

| Translate to ltalian |

— |talian and English

— with a toggle button to change the
entire application language

Benvenuti in una semplice applicazione multi-lingua!

| Traduci in inglese |

Applicazioni Web | - Web Applications |- 2023/2024

Example

App.jsx

Welcome to a simple multilanguage app!

| Translate to ltalian |

Applicazioni Web | - Web Applications | - 2023/2024

languageContext.js

Applicazioni Web | - Web Applications | - 2023/2024

Context Provider

« Acomponent ExContext.Provider is automatically created for each
new Context

* The component specifies a value prop, that is available to all nested
“consumer” components (even if deeply nested)

— Consumers MUST be nested inside the provider
— Providers may be anywhere (assuming the context object is visible)

* Providers may be nested: each level may override the previous value
 When the Provider’s value changes, all consumers will re-render

Applicazioni Web | - Web Applications | - 2023/2024

languageContext.js

Applicazioni Web | - Web Applications | - 2023/2024

Context Consumer (as a Component)

 The automatically created component <ExContext.Consumer> may
be used in the render function/method

* You must provide a callback function that

— Receives the context value (from the closest provider, or defaultValue if no
provider is found)

— Returns the React Element to be rendered

<ExContext.Consumer>
{value => /* render something
based on the context value */}
</ExContext.Consumer>

Applicazioni Web | - Web Applications | - 2023/2024

Components.jsx

Applicazioni Web I - Web Applications | - 2023/2024

Accessing Context With Hooks

e The useContext hook allows
the current component to NUMOEFCONEEXE
<NumberContext.Provider>
consume the context

<NumberContext.Consumer>

* The argument is a Context object

— Must have been created by
React.createContext()

° The Va|ue depends on the CIOSGSt const value = useContext(NumberContext);

enc|05ing provider return <div>The answer is {value}.</div>;
}

function Display() {

— Must be nested inside
<MyContext.Provider>

ApplicazioniWeb | - Web Applications | - 2023/2024

Accessing Context With Hooks

e The useContext hook 3

the current compo NumberContext

, lumberContext.Provider>
consume the contel UEES AR EN AT N6 (N T

. context object, or to create a
* Theargumentisa ¢ 500 provider, with Hooks

— Must have been cr¢
React.createCont

e The value depends on the closest const value = useContext(NumberContext);

enclosing provider return <div>The answer is {value}.</div>;
}

\umberContext.Consumer>

splay() {

— Must be nested inside
<MyContext.Provider>

ApplicazioniWeb | - Web Applications | - 2023/2024

Components.jsx

Applicazioni Web I - Web Applications | - 2023/2024

Accessing Multiple Contexts

https://daveceddia.com/usecontext-hook/

function HeaderBar() {
const user = useContext(CurrentUser);

 May call useContext more than

once const notif = useContext(Notifications);
* All the context variables will be return (

available <header>

Welcome back, {user.name}!
* No nEEd to nest COmponentS You have {notif.length} notifications.
</header>
)
}

Applicazioni Web | - Web Applications |- 2023/2024

https://daveceddia.com/usecontext-hook/

Accessing Multiple Contexts: Component vs. Hook

function HeaderBar() {
return (
<CurrentUser.Consumer>
{user =>
<Notifications.Consumer>
{notif =>
<header>
Welcome back, {user.name}!
You have {notif.length}
notifications.
</header>

}

</Notifications.Consumer>

}

</CurrentUser.Consumer>

)5
} [

function HeaderBar() {

const user = useContext(CurrentUser);
const notif = useContext(Notifications);

return (
<header>
Welcome back, {user.name}!
You have {notif.length} notifications.
</header>

);

ApplicazioniWeb | - Web Applications | - 2023/2024

Changing Context Values

* When a Consumer child needs to update the context value, the Provider
must provide a function callback to perform the update
— As a prop (by drilling the nesting levels)
— As part of the context value
 Example: { language: 'English', togglelLanguage : togglelLanguage }
e Remember: the state is part of the component containing the Provider
— Not in the provider itself
— Not in the context object

Applicazioni Web | - Web Applications | - 2023/2024 H

Caveats

* Do not put everything into Context

— Defeats component portability
— Reduces “purity” of functional components

 Don’t use it for programming laziness
— Explicit parameter passing is also a good documentation practice

 Don’t use it to correct design errors

— Often, a refactoring of the component tree (and props/state lifting) may be a
cleaner solution

Applicazioni Web | - Web Applications | - 2023/2024

() DO
License

* These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
* You are free to:
— Share — copy and redistribute the material in any medium or format
— Adapt — remix, transform, and build upon the material
— The licensor cannot revoke these freedoms as long as you follow the license terms.

e Under the following terms:

— Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

— NonCommercial — You may not use the material for commercial purposes.

— ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

— No additional restrictions — You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

* https://creativecommons.org/licenses/by-nc-sa/4.0/

O OA® ®E

Applicazioni Web | - Web Applications | - 2023/2024

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: Context
	Slide 2: Context, useContext Hook
	Slide 3: Context
	Slide 4: Examples
	Slide 5: Three Context Ingredients
	Slide 6: Context Definition
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Context Provider
	Slide 11: Example
	Slide 12: Context Consumer (as a Component)
	Slide 13: Example
	Slide 14: Accessing Context With Hooks
	Slide 15: Accessing Context With Hooks
	Slide 16: Example
	Slide 17: Accessing Multiple Contexts
	Slide 18: Accessing Multiple Contexts: Component vs. Hook
	Slide 19: Changing Context Values
	Slide 20: Caveats
	Slide 21: License

