
Authentication
For some, but not for all

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2024/2025

2

Outline

• The need for authentication

• HTTP sessions

• Authentication in React and in Express

Applicazioni Web I - Web Applications I - 2024/2025

3

AUTHENTICATION IN WEB APPLICATIONS

Who are you?

Applicazioni Web I - Web Applications I - 2024/2025

https://flaviocopes.com/cookies/

https://flaviocopes.com/cookies/

4

Authentication vs. Authorization

Authentication

• Verify you are who you say you
are (identity)

• Typically done with credentials

– e.g., username, password

• Allows a personalized user
experience

Authorization

• Decide if you have permission to
access a resource

• Granted authorization rights
depends on the identity

– as established during
authentication

Applicazioni Web I - Web Applications I - 2024/2025

Often used in conjunction to protect access to a system

5

Authentication and Authorization

• Developing authentication and authorization mechanisms
– is complicated

– is time-consuming

– is prone to errors

– may require interacting with third-party systems (login with Google, Facebook, …)

– …

• Involve both client and server
– and requires to understand several new concepts

• Better if you rely upon
– best practices and “standardized” processes

– advice by security experts!

Applicazioni Web I - Web Applications I - 2024/2025

6

Layers of Authorization
Who What How When

User Login / Logout / Navigate pages

React App Is the user logged?
Remember user information

State/Context variables Set at login
Destroyed at logout
Queried during navigation

Browser Remembers navigation session Session Cookie (stores session ID) Received at login, in HTTP Response
Re-sent to server at every HTTP Request

Server Remember session data Session storage (creates session ID,
remembers associated data:
username, group, level, …)

Created at login
Destroyed at logout
Retrieved at every HTTP Request

Route (HTTP API) Check authorization
Execute API

Verify session validity At every (non-public) HTTP Request

Route (Login) Perform authentication Check user/pass
If ok, create session information

At Login time

Route (Logout) Forget authentication Destroy session information At Logout request

Database (at Login) Validates user information Queries & password encryption At Login time

Database (HTTP API) Retrieves user information Queries from session information At every HTTP Request

Applicazioni Web I - Web Applications I - 2024/2025

7

COOKIES AND SESSIONS

Giving memory to HTTP

Applicazioni Web I - Web Applications I - 2024/2025

8

Sessions

• HTTP is stateless

– each request is independent and must be self-contained

• A web application may need to keep some information between
different interactions

• For example:

– in an on-line shop, we put a book in a shopping cart

– we do not want our book to disappear when we go to another page to buy
something else!

– we want our “state” to be remembered while we navigate through the website

Applicazioni Web I - Web Applications I - 2024/2025

9

Sessions

• A session is temporary and interactive data interchanged between two
or more parties (e.g., devices)

• It involves one or more messages in each direction

• Often, one of the parties keeps the state of the application

• It is established at a certain point it time and ended at some later point

Applicazioni Web I - Web Applications I - 2024/2025

10

Session ID

• Basic mechanism to maintain session

• Upon authentication, the client receives from the server a session ID

• The session ID allows the server to recognize subsequent HTTP requests
as authenticated

• Such an information

– must be stored on the client side

– must be sent by the client at every request which is part of the session

– must not be sensitive!

• Typically stored in and sent as cookies

Applicazioni Web I - Web Applications I - 2024/2025

11

Cookie

• A small portion of information stored in the browser (in its cookie
storage)

• Automatically handled by browsers

• Automatically sent by the browser to servers when performing a request
to the same domain and path

– options are available to send them in other cases

• Keep in mind that sensitive information should NEVER be stored in a
cookie!

Applicazioni Web I - Web Applications I - 2024/2025

https://en.wikipedia.org/wiki/HTTP_cookie
https://tools.ietf.org/html/rfc6265

https://en.wikipedia.org/wiki/HTTP_cookie
https://tools.ietf.org/html/rfc6265

12

Cookie

• Some relevant attributes, typically set by the server:

– name, the name of the cookie [mandatory]
• Example: SessionID

– value, the value contained in the cookie [mandatory]

• Example: 94$KKDEC3343KCQ1!

– secure, if set, the cookie will be sent to the server over HTTPS, only

– httpOnly, if set, the cookie will be inaccessible to JavaScript code running in the
browser

– expiration date

Applicazioni Web I - Web Applications I - 2024/2025

13

Session-based Auth

• The user state is stored on the server

– in a storage or, for development only, in memory

Applicazioni Web I - Web Applications I - 2024/2025

Browser Server

POST /login

{ username,
password }

Response
Cookie

{ sessionId }

GET /exams

Cookie
{ sessionId }

Response
{ exams: [...]

}

Save
session
data

Check sessionId (in cookie)
Retrieve stored session data

Execute SQL queries

if not successful:
401 Unauthorized

Session storage
{ sessionId : {

username,
userinfo,

temp_data, …} }

14

A Note About Security…

• Always use HTTPS and “secure” cookies (at least in production)
– use “httpOnly” cookies

• Never store sensitive information into cookies

• Rely on best practices and avoid to re-invent the wheel for auth

• Web applications can be exposed to several “basic” attacks
– CSRF (Cross-Site Request Forgery), a user is tricked by an attacker into submitting

a request that they did not intend

– XSS (Cross-Site Scripting), attackers inject malicious JS code into web pages

– Most of these can be prevented with a proper usage of frameworks, best
practices, and dedicated libraries

Applicazioni Web I - Web Applications I - 2024/2025

15

AUTH IN PRACTICE

Authentication and authorization with Passport.js and React

Applicazioni Web I - Web Applications I - 2024/2025

16

Base Login Flow (I)

1. A user fills out a form in the client with a unique user identifier and a
password

2. Data is validated and, if ok, is sent to the server, with a POST API

3. The server receives the request and checks whether the user is already
registered, and the password matches

– Password comparison exploits cryptographic hashes

4. If not, it sends back a response to the client

– “Wrong username and/or password”

Applicazioni Web I - Web Applications I - 2024/2025

17

Base Login Flow (II)

5. If username and password are correct, the server generates a session id

6. The server stores the session id (together with some user info retrieved
by the database) in its “server session storage”

7. The server replies to the login HTTP request by creating and sending a
cookie
– with name = SessionID, value = the generated session id, httpOnly = true, secure =

true (if over HTTPS)

8. The browser receives the response with the cookie
– the cookie is automatically stored by the browser

– the response is handled by the web application (e.g., to say "Welcome!")

Applicazioni Web I - Web Applications I - 2024/2025

18

Login Form: Use Standard Practice

• Create it as React component with local state or…

Applicazioni Web I - Web Applications I - 2024/2025

<LoginForm userLogin={userLoginCallback}/>

function LoginForm(props) => {

 const [username, setUsername] = useState('');

 const [password, setPassword] = useState('');

 doLogin = (event) => {

 event.preventDefault();

 if (… form valid …) {

 props.userLoginCallback(username, password); // Make POST request to authentication server

 } else {

 // show invalid form fields

 }

 }

...

19

Login Form: Use Standard Practice

• … create it as React component with useActionState

Applicazioni Web I - Web Applications I - 2024/2025

<LoginForm userLogin={userLoginCallback}/>

function LoginForm(props) => {

 const [state, formAction] = useActionState(doLogin, {username: '', password: ''});

 doLogin = async (prevState, formData) => {

 if (… form valid …) {

 props.userLoginCallback(formData.get('username'), formData.get('password')); // Make POST
request to authentication server

 } else {

 // show invalid form fields

 }

 }

...

20

Authentication with Passport

• We are going to use an authentication middleware to authenticate users
in Express
– Passport, http://www.passportjs.org

– install with: npm install passport

• Passport is flexible and modular
– supporting 500+ different authentication strategies

– for instance, username/password, login with Google, login with Facebook, etc.

– able to adapt to different types of databases (SQL and noSQL)

– adopting some best practices under-the-hood
• e.g., httpOnly cookies for sessions

Applicazioni Web I - Web Applications I - 2024/2025

http://www.passportjs.org/

21

Passport: Configuration

An Express-based server app needs to be configured in three ways before
using Passport for authentication:

1. Choose and set up which authentication strategy to adopt

2. Personalize (and install) additional middleware

3. Decide and configure which user info is linked with a specific session

Applicazioni Web I - Web Applications I - 2024/2025

22

1. LocalStrategy

• Strategies define how to authenticate
users

• LocalStrategy supports
authentication with username and
password
– install with: npm i passport-local

• function verify (username,
password, callback)
– Goal: to find/verify the user that possesses

given credentials

• callback() supplies Passport with
the authenticated user
– or false and an optional message

Applicazioni Web I - Web Applications I - 2024/2025

import passport from 'passport’;
import LocalStrategy from 'passport-local';

passport.use(new LocalStrategy(function
verify (username, password, callback) {
 dao.getUser(username,
password).then((user) => {

 if (!user)
 return callback(null, false, {
message: 'Incorrect username and/or
password.' });

 return callback(null, user);
 });
}));

23

The Verify Function in LocalStrategy

• username, password: automatically
extracted from req.body.username and
req.body.password

• Must check the validity of the credentials
• callback(): communicates the result

– callback(null, user) → valid
credentials

– callback(null, false) → invalid
credentials, login failed

– callback(null, false, { message:
'error'}) → invalid credentials, login
failed, with explanation

– callback({error: 'err msg'}) →
application error (e.g., DB error)

• user: any object containing information
about the currently validated user

Applicazioni Web I - Web Applications I - 2024/2025

import passport from 'passport’;

import LocalStrategy from 'passport-local';

passport.use(new LocalStrategy(function verify
(username, password, callback) {

 dao.getUser(username, password).then((user) => {

 if (!user)

 return callback(null, false, { message:
'Incorrect username or password.' });

 return callback(null, user);

 });

}));

24

Storing Passwords in the Server

• Never store plain text passwords in the server (e.g., in the database)

• Always perform hashing of the password

– so that nobody can retrieve your password, knowing its hash

– as hashing is a one-way function

• scrypt is a (secure) password hashing function that you can use

– e.g., password ->
d72c87d0f077c7766f2985dfab30e8955c373a13a1e93d315203939f542ff86e

– test it at https://www.browserling.com/tools/scrypt

• In Node, it is included in the provided crypto module

Applicazioni Web I - Web Applications I - 2024/2025

https://www.browserling.com/tools/bcrypt

25

scrypt

• Two main functions, both async and returning Promises:

1. Hash a password:
crypto.scrypt(password, salt, keylen, function(err,
hashedPassword))

 The salt should be random and at least 16 bytes longs:
 const salt = crypto.randomBytes(16)

 keylen is the length of the hash to obtain (e.g., 32 or 64).

2. Check if a given password matches with a stored hash:
crypto.timingSafeEqual(storedPassword, hashedPassword)

 The given password must be hashed with the same salt of the stored password

Applicazioni Web I - Web Applications I - 2024/2025

26

Password Hash Check (within Passport)

Applicazioni Web I - Web Applications I - 2024/2025

export const getUser = (email, password) => {
 return new Promise((resolve, reject) => {
 const sql = 'SELECT * FROM user WHERE email = ?';
 db.get(sql, [email], (err, row) => {
 if (err) { reject(err); }
 else if (row === undefined) { resolve(false); }
 else {
 const user = {id: row.id, username: row.email};

 const salt = row.salt;
 crypto.scrypt(password, salt, 32, (err, hashedPassword) => {
 if (err) reject(err);
 if(!crypto.timingSafeEqual(Buffer.from(row.password, 'hex'), hashedPassword))
 resolve(false);
 else resolve(user);
 });
 }
 });
 });
};

27

2. Additional Middleware

• Given Passport modularity, you may
want additional middlewares for, e.g.,
enabling sessions

• Sessions are enabled through the
express-session middleware
– https://www.npmjs.com/package/express-

session
– install with: npm i express-session

• By default, express-session stores
the session in memory
– which is highly inefficient and NOT

recommended in production

• It also supports different session
storages, from files to DB

Applicazioni Web I - Web Applications I - 2024/2025

import session from 'express-session';

// enable sessions in Express
app.use(session({
 // set up here express-session
 secret: "a secret phrase of your choice",
 resave: false,
 saveUninitialized: false,
}));

// init Passport to use sessions
app.use(passport.authenticate('session'));

https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/express-session

28

2. Session Options

• The express-session middleware supports various parameters

• The most used ones are:
– secret: used to sign the session ID cookie [required]

– store: the session store instance, defaults to MemoryStore if not specified

– resave: forces the session to be saved back to the session store, even if the
session was never modified during the request. Default (deprecated) value is true,
typically set to false

– saveUninitialized: forces a session that is new but not modified to be saved
to the store. Choosing false is useful for implementing login sessions, reducing
server storage usage, or complying with laws that require permission before
setting a cookie. Default (deprecated) value is true.

Applicazioni Web I - Web Applications I - 2024/2025

29

3. Session Personalization

• After enabling sessions, you
should decide which info to put
into them

– for generating the cookie and for
checking the information that
arrives within it

• The serializeUser() and
deserializeUser() methods
allow you to define callbacks to
perform these operations

Applicazioni Web I - Web Applications I - 2024/2025

passport.serializeUser((user, cb) => {
 cb(null, {id: user.id, email:
user.username, name: user.name});
});

passport.deserializeUser((user, cb) => {
 return cb(null, user);
});

Session storage
{ sessionId : {

username,
userinfo,

temp_data, …} }

30

3a. serializeUser()

• In the code, we serialize some
user info to be stored in the
session

– a subset of the available user info is
ok

• Passport takes that user info and
stores it internally on
req.session.passport

– which is passport’s internal
mechanism to keep track of things

Applicazioni Web I - Web Applications I - 2024/2025

passport.serializeUser((user, cb) => {
 cb(null, {id: user.id, email:
user.username, name: user.name});
});

passport.deserializeUser((user, cb) => {
 return cb(null, user);
});

Session storage
{ sessionId : {

username,
userinfo,

temp_data, …} }

31

3b. deserializeUser()

• The same user info that was
serialized before will be restored
when the session is
authenticated by this function

• All the requests to the server will
hit this function

• The user object created by
deserializeUser() will be
available in every authenticated
request in req.user

Applicazioni Web I - Web Applications I - 2024/2025

passport.serializeUser((user, cb) => {
 cb(null, {id: user.id, email:
user.username, name: user.name});
});

passport.deserializeUser((user, cb) => {
 return cb(null, user);
});

Session storage
{ sessionId : {

username,
userinfo,

temp_data, …} }

32

Login with Passport

• After setting everything up, now we can log in a user with Passport

– adding an Express route able to receive the “login” requests

– passing the authenticate(<strategy>) method as the first additional
callback

• authenticate('local') will look for a username and password field in req.body

Applicazioni Web I - Web Applications I - 2024/2025

app.post('/api/login', passport.authenticate('local'), (req,res) => {

 // This function is called if authentication is successful.
 // req.user contains the authenticated user.
 res.json(req.user.username);

});

33

Storing User Information in React

• With the login response, some user information might be available in the
browser
– e.g., the username

• You might want to store such information, for later usage

• Our suggestion, to keep things simple:
– store them in a Context (or a State)

– ask the server for them, when needed (e.g., with API.getUserInfo() in a
useEffect)

• More suggestions:
– https://www.robinwieruch.de/react-router-authentication/

Applicazioni Web I - Web Applications I - 2024/2025

https://www.robinwieruch.de/react-router-authentication/
https://www.robinwieruch.de/react-router-authentication/
https://www.robinwieruch.de/react-router-authentication/
https://www.robinwieruch.de/react-router-authentication/
https://www.robinwieruch.de/react-router-authentication/
https://www.robinwieruch.de/react-router-authentication/

34

After the Login…

• Some routes in the server needs to be protected

– i.e., they shall provide a response for authenticated users, only

• The workflow shown before (session-based auth) applies

• The browser always sends the HTTP cookie header to any API that
requires authentication

– beware: cookie cannot be sent to other domains/ports

Applicazioni Web I - Web Applications I - 2024/2025

35

With CORS Enabled

• By default, cookies can be sent to the same origin

– CORS has mechanisms to overcome this limitation

• In the server, we need to define both the credentials and the origin
options, when setting up the cors module:

Applicazioni Web I - Web Applications I - 2024/2025

const corsOptions = {
 origin: 'http://localhost:3000',
 credentials: true,
};
app.use(cors(corsOptions));

36

With CORS Enabled

• In the client, all the fetch requests to protected APIs must include the
“credentials: include” option:

• The login request must include such an option as well

– even if it is not to a protected API

– otherwise the cookie will not be available in subsequent (protected) requests

Applicazioni Web I - Web Applications I - 2024/2025

const response = await fetch(SERVER_URL + '/api/exams', {
 credentials: 'include',
});

37

Protecting Routes: Basic Way

• Finally, after the session creation, we might want to protect some other
routes

• To check if a request comes from an authenticated user, we can check
Passport's req.isAuthenticated() at the beginning of every
callback body in each route to protect

– it returns true if the session id coming with the request is a valid one

Applicazioni Web I - Web Applications I - 2024/2025

38

Protecting Routes: Advanced Way

• We can create an Express middleware that includes
req.isAuthenticated()

• and use it either at the application level or at the route level

– useful, e.g., if we want to handle errors

Applicazioni Web I - Web Applications I - 2024/2025

const isLoggedIn = (req, res, next) => {
 if(req.isAuthenticated())
 return next();

 return res.status(400).json({message : "not authenticated"});
}

app.get('/api/exams', isLoggedIn, (req, res) => {
 ...
});

39

Logout
• The browser will send a "logout" request to the server

– e.g., a POST /logout

• The server will clear the session (and delete the stored session id)

– extremely trivial with Passport!

Applicazioni Web I - Web Applications I - 2024/2025

app.post('/api/logout', (req, res) => {
 req.logout(() => {
 res.end();
 });
});

40

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: Authentication
	Slide 2: Outline
	Slide 3: Authentication in WEB Applications
	Slide 4: Authentication vs. Authorization
	Slide 5: Authentication and Authorization
	Slide 6: Layers of Authorization
	Slide 7: Cookies and Sessions
	Slide 8: Sessions
	Slide 9: Sessions
	Slide 10: Session ID
	Slide 11: Cookie
	Slide 12: Cookie
	Slide 13: Session-based Auth
	Slide 14: A Note About Security…
	Slide 15: AUTH in Practice
	Slide 16: Base Login Flow (I)
	Slide 17: Base Login Flow (II)
	Slide 18: Login Form: Use Standard Practice
	Slide 19: Login Form: Use Standard Practice
	Slide 20: Authentication with Passport
	Slide 21: Passport: Configuration
	Slide 22: 1. LocalStrategy
	Slide 23: The Verify Function in LocalStrategy
	Slide 24: Storing Passwords in the Server
	Slide 25: scrypt
	Slide 26: Password Hash Check (within Passport)
	Slide 27: 2. Additional Middleware
	Slide 28: 2. Session Options
	Slide 29: 3. Session Personalization
	Slide 30: 3a. serializeUser()
	Slide 31: 3b. deserializeUser()
	Slide 32: Login with Passport
	Slide 33: Storing User Information in React
	Slide 34: After the Login…
	Slide 35: With CORS Enabled
	Slide 36: With CORS Enabled
	Slide 37: Protecting Routes: Basic Way
	Slide 38: Protecting Routes: Advanced Way
	Slide 39: Logout
	Slide 40: License

