
Introduction to React
JS Frameworks to the rescue

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2024/2025

2

Goal

• Learn one of the most popular
front-end libraries

– Basic principles

– Application architecture

– Programming techniques

• Leverage the knowledge of JS
concepts

• Get to know the browser’s object
models (BOM and DOM)

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/
https://github.com/facebook/react

https://react.dev/
https://github.com/facebook/react

3

Why a Library?

• Simplify the browser
environment

– Uniform DOM methods

– More explicit hierarchy

– Higher-level components than
HTML elements

– Automatic processing of events and
updates

• Simplify the development
methods

– Predefined programming patterns
and application architecture

– Lots of compatible plugins and
extensions

– Explicit and rigid state management

Applicazioni Web I - Web Applications I - 2024/2025

4

Main Resources

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/reference/react https://react.dev/learn

Tutorials and
guides

API Reference

https://react.dev/reference/react
https://react.dev/learn

5

Browser Development Tools

Applicazioni Web I - Web Applications I - 2024/2025

https://addons.mozilla.org/en-US/firefox/addon/react-devtools/

https://chrome.google.com/webstore/detail/react-developer-
tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

https://addons.mozilla.org/en-US/firefox/addon/react-devtools/
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

6

BROWSER’S OBJECT MODELS

Before diving in…

Applicazioni Web I - Web Applications I - 2024/2025

7

Browser Main Objects

• window represents the window that contains the
Document Object Model (DOM) document

– allows to interact with the browser via the BOM: Browser
Object Model (not standardized)

– global object, contains all JS global variables

• can be omitted when writing JS code in the page

• document

– represents the DOM tree loaded in a window

– accessible via a window property: window.document

Applicazioni Web I - Web Applications I - 2024/2025

https://medium.com/@fknussel/dom-bom-revisited-cf6124e2a816

https://medium.com/@fknussel/dom-bom-revisited-cf6124e2a816

8

Browser Object Model

• window properties

– console: browser debug console (visible via developer tools)

– document: the document object

– history: allows access to History API (history of URLs)

– location: allows access to Location API (current URL, protocol, etc.). Read/write
property, i.e., can be set to load a new page

– localStorage and sessionStorage: allows access to the two objects via the
Web Storage API, to store (small) info locally in the browser

Applicazioni Web I - Web Applications I - 2024/2025

https://developer.mozilla.org/en-US/docs/Web/API/Window

https://developer.mozilla.org/en-US/docs/Web/API/Window

9

Document Object Model

• Browser’s internal representation of a web page
– Obtained through parsing HTML

• Browsers expose an API (in JavaScript)
that you can use to interact with
the DOM
– Access the page metadata and headers
– Inspect the page structure
– Edit any node in the page
– Change any node attribute
– Create/delete nodes in the page
– Edit the CSS styling and classes
– Attach or remove event listeners

Applicazioni Web I - Web Applications I - 2024/2025

https://flaviocopes.com/dom/

https://flaviocopes.com/dom/

10

Types of Nodes (Classes)

• Document: the document Node,
the root of the tree

• Element: an HTML tag

• Attr: an attribute of a tag

• Text: the text content of an
Element or Attr Node

• Comment: an HTML comment

• DocumentType: the Doctype
declaration

Applicazioni Web I - Web Applications I - 2024/2025

11

Event Listeners

• JavaScript in the browser uses an event-driven programming model

– Everything is triggered by the firing of an event

• Events are determined by

– The Element generating the event (event source target)

– The type of generated event

Applicazioni Web I - Web Applications I - 2024/2025

https://flaviocopes.com/javascript-events/

https://flaviocopes.com/javascript-events/

12

Event Categories

• User Interface events (load, resize, scroll, etc.)

• Focus/blur events

• Mouse events (click, dblclick, mouseover, drag, etc.)

• Keyboard events (keyup, etc.)

• Form events (submit, change, input)

• Mutation events (DOMContentLoaded, etc.)

• HTML5 events (invalid, loadeddata, etc.)

• CSS events (animations etc.)

Applicazioni Web I - Web Applications I - 2024/2025

https://en.wikipedia.org/wiki/DOM_events

https://en.wikipedia.org/wiki/DOM_events

13

Preventing Default Behavior

• Many events cause a default behavior

– Click on link: go to URL

– Click on submit button: form is sent

• Can be prevented by event.preventDefault()

Applicazioni Web I - Web Applications I - 2024/2025

14

DESIGN PRINCIPLES

A first high-level run about the main design concepts in React

Applicazioni Web I - Web Applications I - 2024/2025

The React Handbook, Flavio Copes
https://flaviocopes.com/page/react-handbook/

https://flaviocopes.com/page/react-handbook/

15

React Key Concepts

• Declarative approach

– Never explicitly manipulate the
DOM

– Never explicitly define the order of
operations

– Just define how each component is
going to render itself

• Functional design approach

– Components as functions

– Re-render everything on every
change (Virtual DOM)

– Explicit management of the state of
the application

Applicazioni Web I - Web Applications I - 2024/2025

16

React is Functional

• UI Fragment = f (state, props)

• Many components do not need to manage state

• UI Fragment = f (props)
– Idempotent

– Immutable

• Jargon note: props = properties

Applicazioni Web I - Web Applications I - 2024/2025

http://slides.com/johnlynch/reactjs

http://slides.com/johnlynch/reactjs

17

Immutability

• Reacts exploits Immutability of objects, for ease of programming and
efficiency of processing

• Component ‘props’ are immutable (read-only by the component)

• Component ‘state’ is not directly mutable (can be changed only
through special calls)

• Functions are ‘pure’ (have no side-effects besides computing the return
value)

– Idempotency (re-rendering the same component always yields the same result)

– Predictability

Applicazioni Web I - Web Applications I - 2024/2025

18

Re-Rendering

• The application is made of Components

• The entire application is re-rendered:

– Every time a state is changed

– Every time a property is changed

• Each Component will re-build itself from scratch

– With minor variations, or

– Radically different

• Performance?

Applicazioni Web I - Web Applications I - 2024/2025

19

Re-Rendering Performance

• Modifications to the DOM are expensive (re-computing layout and
updating GUI)

• React implements a Virtual DOM layer

– Internal in-memory data structure, optimized and very fast to update

– Corrects some DOM anomalies and asymmetries

– Manages its own set of “synthetic” events

– After components re-render, React computes the difference between the “old”
DOM and the new modified Virtual DOM

– Only modifications and differences are selectively applied to the browser’s DOM,
in batch

Applicazioni Web I - Web Applications I - 2024/2025

20

Update Cycle

• Build new Virtual DOM tree

• Diff with old one

• Compute minimal set of changes

• Put them in a queue

• Batch render all changes to browser

Applicazioni Web I - Web Applications I - 2024/2025

http://slides.com/johnlynch/reactjs

https://www.oreilly.com/library/view/learnin
g-react-native/9781491929049/ch02.html

http://slides.com/johnlynch/reactjs
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch02.html
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch02.html

21

Synthetic Events

• React implements its own event system

• A single native event handler at root of each component

• Normalizes events across browsers

• Decouples events from DOM

Applicazioni Web I - Web Applications I - 2024/2025

http://slides.com/johnlynch/reactjs

http://slides.com/johnlynch/reactjs

22

How React Code is integrated in the DOM

Applicazioni Web I - Web Applications I - 2024/2025

const container =
 document.getElementById('root');

const root = createRoot(container);

root.render(<h1>Hello, world!</h1>);

React element

DOM container node

Render element into container

23

JSX Syntax

const container =
document.getElementById('myapp');

const root = createRoot(container);

root.render(

 <div id="test">

 <h1>A title</h1>

 <p>A paragraph</p>

 </div>

);

const container =
document.getElementById('myapp');

const root = createRoot(container);

root.render(

 React.DOM.div(

 { id: 'test' },

 React.DOM.h1(null, 'A title'),

 React.DOM.p(null, 'A paragraph')

);

Applicazioni Web I - Web Applications I - 2024/2025

JSX Syntax JS calls to React.createElement

Transpiling
(Babel)

Equivalent

24

Components

• Everything on a page is a
Component

– Even simple HTML tags
(React.DOM.element)

• Components may be nested

• ReactDOM.createRoot().render()
builds a component and attaches
it to a DOM container

Applicazioni Web I - Web Applications I - 2024/2025

25

Defining Custom Components

As a function, returning DOM elements

const BlogPostExcerpt = () => {

 return (

 <div>

 <h1>Title</h1>

 <p>Description</p>

 </div>

)

}

The function may receive some props

const BlogPostContent = (props) => {

 return (

 <div>

 <p>{props.content}</p>

 </div>

)

}

Applicazioni Web I - Web Applications I - 2024/2025

26

Types of Components

Presentational Components

• Generate DOM nodes to be
displayed

• Do not manage application state

• Might have some internal state,
uniquely for presentation
purposes

Container Components

• Manage the state for a group of
children

• May interact with the back-end

• Create (presentational) children
to display the information

Applicazioni Web I - Web Applications I - 2024/2025

27

Props and State

• Props (properties) are passed to a component
by its parent

– Values (strings, objects, …) to configure how the
component displays or behaves
• Top-to-bottom data flow

– Functions (callbacks) to access the parent’s
methods
• Bottom-to-top action requests

Applicazioni Web I - Web Applications I - 2024/2025

https://www.techdiagonal.com/reactjs_courses/beginner/understanding-reactjs-props/

https://www.techdiagonal.com/reactjs_courses/beginner/understanding-reactjs-props/

28

Props and State

• State is a set of variables local to the
component

– Initialized with default value or by props’ values

– Can be mutated only by calling specific methods
• Asynchronous

• Will initiate re-rendering of the Virtual DOM

– Current state value can be passed to children (as
props)

Applicazioni Web I - Web Applications I - 2024/2025

https://www.techdiagonal.com/reactjs_courses/beginner/understanding-reactjs-props/

https://www.techdiagonal.com/reactjs_courses/beginner/understanding-reactjs-props/

29

Unidirectional Data Flow

• State is passed to the view and to
child components

• Actions are triggered by the view

• Actions can update the state

• The state change is passed to the
view and to child component

Applicazioni Web I - Web Applications I - 2024/2025

30

Corollary

• A state is always owned by one Component

– Any data that's affected by this state can only affect Components below it: its
children.

• Changing state on a Component will never affect its parent, or its
siblings, or any other Component in the application

– Just its children

• For this reason, state is often moved up in the Component tree, so that
it can be shared between components that need to access it.

Applicazioni Web I - Web Applications I - 2024/2025

31

FIRST REACT APPLICATION

Installing, configuring and running the Hello World

Applicazioni Web I - Web Applications I - 2024/2025

32

Basic requirements

• Import the React library
– Import several needed libraries

• We want to use JSX
– Babel required

• We need to run on a web server
– To be able to use modules

• import in JS code
• <script type='module'> in HTML code

– Avoid problems with CORS

• Implement polyfills for browser compatibility
• Ease app development (edit-save-reload cycle)
• …

Applicazioni Web I - Web Applications I - 2024/2025

33

Starting With All The Needed Infrastructure

Applicazioni Web I - Web Applications I - 2024/2025

1. npm create vite@latest my-app

2. From the menu, choose React, then JavaScript

3. cd my-app

4. npm install

5. … 65 Megabytes later …

6. npm run dev

7. Visit http://localhost:5173

https://vitejs.dev/

http://localhost:5173/
https://vitejs.dev/

34

Folder Structure

my-app
├── node_modules
├── package.json
├── package-lock.json
├── .gitignore
├── vite.config.js
├── index.html
├── public
│ └── vite.svg
└── src
 ├── assets
 │ └── react.svg
 ├── App.css
 ├── App.jsx
 ├── index.css
 └── main.jsx

• public is the web server root

– Static files go here

• index.html is the page template

– Published at http://localhost:xxxx

– Automatically reloads when app changes

– No need to modify, normally

– Contains an element with id="root"

• src contains all scripts

• src/main.jsx is the JavaScript entry point

– Contains the createRoot call to mount
the App in the #root element

– Do not touch, normally

• src/App.jsx is the file containing your
application

– Develop here!

– Feel free to import other components

Applicazioni Web I - Web Applications I - 2024/2025

loads

mounts

http://localhost:3000/

35

Importing/Exporting

Applicazioni Web I - Web Applications I - 2024/2025

• The browser uses “ES6
Modules”

– ECMA Standard

• Uses import/export
keywords

– The require function used in
Node.js doesn’t work here

https://www.samanthaming.com/tidbits/79-module-cheatsheet/

https://www.samanthaming.com/tidbits/79-module-cheatsheet/

36

Example: Hello world

• App must return the JSX of the
whole application

• We may use “custom components”
– Simply defined as JS functions

– Receive ‘props’
• The lang JSX attribute becomes a

property props.lang

Applicazioni Web I - Web Applications I - 2024/2025

App.jsx

function Button(props) {

if (props.lang === 'it')

return <button>Ciao!</button>;

else

return <button>Hello!</button>;

}

function App() {

return (

<p>

Press here: <Button lang='it' />

</p>

);

}

export default App;

37

Example: Components in a Separate File

Applicazioni Web I - Web Applications I - 2024/2025

App.jsx

import Button from './Button.jsx';

function App() {

return (

<p>

Premi qui: <Button lang='it' />

</p>

);

}

export default App;

function Button(props) {

if (props.lang === 'it')

return <button>Ciao!</button>;

else

return <button>Hello!</button>;

}

export default Button;

Button.jsx

38

Example: Dynamic State

Applicazioni Web I - Web Applications I - 2024/2025

Button.jsx

import { useState } from "react";

function Button(props) {

let [buttonLang, setButtonLang] = useState(props.lang) ;

if (buttonLang === 'it')

return <button onClick={()=>setButtonLang('en')}>Ciao!</button>;

else

return <button onClick={()=>setButtonLang('it')}>Hello!</button>;

}

export default Button;

39

Example: adding Bootstrap

• Bootstrap CSS may be loaded
“manually” from index.html

or, better…

• The react-bootstrap library
delivers many React Components
that mimic the various Bootstrap
classes
– npm install react-bootstrap

– npm install bootstrap

Applicazioni Web I - Web Applications I - 2024/2025

import 'bootstrap/dist/css/bootstrap.min.css';

import { Col, Container, Row } from 'react-
bootstrap';

import MyButton from './Button.jsx';

function App() {

return (

<Container>

<Row>

<Col>

Premi qui: <MyButton lang='it' />

</Col>

</Row>

</Container>

);

}

export default App;

https://react-bootstrap.github.io/

App.jsx

https://react-bootstrap.github.io/

40

Example: adding Bootstrap

import { useState } from "react";

import { Button } from "react-bootstrap";

function MyButton(props) {

let [buttonLang, setButtonLang] = useState(props.lang) ;

if (buttonLang === 'it')

return <Button variant='primary' onClick={()=>setButtonLang('en')}>Ciao!</Button>

else

return <Button variant='primary' onClick={()=>setButtonLang('it')}>Hello!</Button>

}

export default MyButton;

Applicazioni Web I - Web Applications I - 2024/2025

https://react-bootstrap.github.io/

Button.jsx

https://react-bootstrap.github.io/

41

What’s next?

• Components and props

• JSX

• State and Hooks

• Events

• Forms

• Lifecycle

• Router

• …

Applicazioni Web I - Web Applications I - 2024/2025

42

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: Introduction to React
	Slide 2: Goal
	Slide 3: Why a Library?
	Slide 4: Main Resources
	Slide 5: Browser Development Tools
	Slide 6: BROWSER’S Object ModelS
	Slide 7: Browser Main Objects
	Slide 8: Browser Object Model
	Slide 9: Document Object Model
	Slide 10: Types of Nodes (Classes)
	Slide 11: Event Listeners
	Slide 12: Event Categories
	Slide 13: Preventing Default Behavior
	Slide 14: Design principles
	Slide 15: React Key Concepts
	Slide 16: React is Functional
	Slide 17: Immutability
	Slide 18: Re-Rendering
	Slide 19: Re-Rendering Performance
	Slide 20: Update Cycle
	Slide 21: Synthetic Events
	Slide 22: How React Code is integrated in the DOM
	Slide 23: JSX Syntax
	Slide 24: Components
	Slide 25: Defining Custom Components
	Slide 26: Types of Components
	Slide 27: Props and State
	Slide 28: Props and State
	Slide 29: Unidirectional Data Flow
	Slide 30: Corollary
	Slide 31: First React Application
	Slide 32: Basic requirements
	Slide 33: Starting With All The Needed Infrastructure
	Slide 34: Folder Structure
	Slide 35: Importing/Exporting
	Slide 36: Example: Hello world
	Slide 37: Example: Components in a Separate File
	Slide 38: Example: Dynamic State
	Slide 39: Example: adding Bootstrap
	Slide 40: Example: adding Bootstrap
	Slide 41: What’s next?
	Slide 42: License

