<WA1/>
<AW1/> _
2025 WHAT IF 1 TOLD)YOU
] - -tv

Introduction to React

JS Frameworks to the rescue

Fulvio Corno
Luigi De Russis

Applicazioni Web | - Web Applications | - 2024/2025 ‘@@@@\

G O a | '?@/@es L.
7

Qr...
0/7;:;";\730

* Learn one of the most popular %@c%
front-end libraries ?
— Basic principles @
— Application architecture
— Programming techniques React

o Leverage the knowledge of JS The library for web and native user interfaces
concepts https://react.dev/

https://github.com/facebook/react

 Get to know the browser’s object
models (BOM and DOM)

ApplicazioniWeb | - Web Applications |- 2024/2025

https://react.dev/
https://github.com/facebook/react

Why a Library?

* Simplify the browser e Simplify the development

environment methods

— Uniform DOM methods — Predefined programming patterns

— More explicit hierarchy and application architecture

— Higher-level components than — Lots of compatible plugins and
HTML elements extensions

— Automatic processing of events and — Explicit and rigid state management
updates

ApplicazioniWeb | - Web Applications |- 2024/2025

Main Resources

Tutorials and

guides

@ Q Search C Lean Reference Community Blog
GET STARTED LEARN REACT > ON THIS PAGE
Quick Start ~

Quick Start e

Tutorlal: Tic-Tac-Toe Creating and nesting components

Welcome to the React documentation! This page will give you an intreduction to the 80% of

Thinking in React React concepts that you will use on a daily basis.

Writing markup with JSX
Installation > Adding styles

Displaying data

LEARNREACT You will learn
Conditional rendering
Describing the Ul > « How to create and nest components
* How to add markup and styles Rendering ists
Adding Interactivity > .
How to display data Responding ta events
Managing State N « How to render conditions and lists
« How to respond to events and update the screen Updating the screen
Escape Hatches > « How ta share data between components

Using Hooks.
Sharing data between components

Creating and nesting components Next Steps

React apps are made out of components. A component s a piece of the Ul (user interface) that has its own

logic and appearance. A component can be as small as a button, or as large as an entire page.

React components are JavaScript functions that return markup:

function MyButton() €
return (
<button>I'm a button</button>
N

Now that you've declared MyButton , you can nest it into another component:

export default function NyApp() {
return (
<div
<hl>Welcome to my app</hl>
ouyButton />
</div>

Isthis page useful? (3 Q))

API| Reference

& o

react@18.2.0

Hooks: ~

useCallback

useContext

useDebugValue

useDeferredValue

useEffect

useld

uselmperativeHandle

uselnsertionEffect

useLayoutEffect

useMemo

useReducer

useRef

useState

useSyncExternalStore

useTransition

Components >

APls >

react-dom@18.2.0

Components >
APIs >
Client APIs >
Server APls >

Isthis page useful? (4 §Q)

Learn Reference

API REFERENCE »

Built-in React Hooks

Hooks let you use different React features from your components. You can either use the built-

in Hooks or combine them to build your own. This page lists all built-in Hooks in React.

State Hooks

Statelets a component “remember"” information like user input. For example, a form component can use state

to store the input value, while an image gallery component can use state to store the selected image index.
To add state to a component, use one of these Hooks:

« useState declares a state variable that you can update directly.

+ useReducer declares a state variable with the update logic inside a reducer function.

function ImageGallery() {
const [index, setIndex] - usestate(e);

Context Hooks
Contextlets a component receive information from distant parents without passing it as props. For example,
your app's top-level component can pass the current Ul theme to all components below, no matter how deep.

* useContext reads and subscribes to a context.
function Button() {

const theme = useContext(ThemeContext);

Ref Hooks

Refslet acomponent hold some information that isn't used for rendering, like a DOM node or a timeout ID.
Unlike with state, updating a ref does not re-render your component. Refs are an "escape hatch” from the

React Eamdigm. Thc: are useful when !Du need to work non-React szsh.‘ms, such as the b wser

https://react.dev/learn

Community Blog

ON THIS PAGE

Overview

State Hooks

Context Hooks

Ref Hooks

Effect Hooks

Performance Hooks

Other Hooks

Your own Hooks

https://react.dev/reference/react

ApplicazioniWeb | - Web Applications |- 2024/2025

https://react.dev/reference/react
https://react.dev/learn

Browser Development Tools

(Y 'D Analisi pagina Consele O Debugger T Rete {} Editor stili

(v Search (text or /regex/) e

= @ ltems

699px x S54px

- ®

=1

() Prestazioni Lk Memaria . Components 3

Counter

props

» counter: {id: 1, value: 2}
onDecrement: F () {}
onpelete: F () {3}
onIncrement: £ () {3}

new prop
rendered by
Counters
]ﬁ[7 Filtra messaggi Errori Awisi Log Info Debug
»

gl - X

© HF O

W

C55 ¥HR Richieste -m x

G

£~ chrome web store

React Developer Tools

® Featured

***** 1,419 (D | Developer Tools | 4,000,000+ users

https://chrome.google.com/webstore/detail/react-developer-
tools/fmkadmapgofadoplibifkapdkoienihi?hl=en

¢ ABD-ONS

React Developer Tools
by React

https://addons.mozilla.org/en-US/firefox/addon/react-devtools/

ApplicazioniWeb | - Web Applications |- 2024/2025

https://addons.mozilla.org/en-US/firefox/addon/react-devtools/
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

Before diving in...

BROWSER’S OBJECT MODELS

Browser Main Objects

 window represents the window that contains the
Document Object Model (DOM) document

— allows to interact with the browser via the BOM: Browser
Object Model (not standardized)

— global object, contains all JS global variables
e can be omitted when writing JS code in the page

* document
— represents the DOM tree loaded in a window
— accessible via a window property: window.document

window

/ * \]avaSc-*int

document

navigator
sCreen
location
frames

history

XMLHttpRequest

Object

Array

Function

https://medium.com/@fknussel/dom-bom-revisited-cf6124e2a816

Applicazioni Web | - Web Applications | - 2024/2025

https://medium.com/@fknussel/dom-bom-revisited-cf6124e2a816

Browser Object Model

* window properties
— console: browser debug console (visible via developer tools)
— document: the document object
— history: allows access to History API (history of URLSs)

— location: allows access to Location API (current URL, protocol, etc.). Read/write
property, i.e., can be set to load a new page

— localStorage and sessionStorage: allows access to the two objects via the
Web Storage API, to store (small) info locally in the browser

https://developer.mozilla.org/en-US/docs/Web/API/Window

Applicazioni Web | - Web Applications | - 2024/2025

https://developer.mozilla.org/en-US/docs/Web/API/Window

Document Object Model

* Browser’s internal representation of a web page
— Obtained through parsing HTML

* Browsers expose an API (in JavaScript)
hod

that you can use to interact with v
the DOM
— Access the page metadata and headers ~ — ===t
— Inspect the page structure
— Edit any node in the page
— Change any node attribute
— Create/delete nodes in the page
— Edit the CSS styling and classes
— Attach or remove event listeners

“do the exercise
ariyway ™

“active, but if it were,
the answers to this™

“lake your time”

"first, asit's)
=ually sasy.”
[span]

https://flaviocopes.com/dom/ °

Applicazioni Web | - Web Applications | - 2024/2025

https://flaviocopes.com/dom/

Types of Nodes (Classes)

e Document: the document Node,

the root of the tree EventTarget
 Element: an HTML tag Nle
* Attr: an attribute of a tag — 7 4 ™
 Text: the text content of an T
Element or Attr Node I _ [svcetemen
* Comment: an HTML comment el HTHLTW N

 DocumentType: the Doctype
declaration

ApplicazioniWeb | - Web Applications |- 2024/2025

Comment

HTMLInputElement HTMLBodyElement HTMLAnchorElemen

Event Listeners

e JavaScript in the browser uses an event-driven programming model
— Everything is triggered by the firing of an event

e Events are determined by
— The Element generating the event (event seuree target)
— The type of generated event

https://flaviocopes.com/javascript-events/

Applicazioni Web | - Web Applications | - 2024/2025

https://flaviocopes.com/javascript-events/

Event Categories

e User Interface events (load, resize, scroll, etc.)
* Focus/blur events

* Mouse events (click, dblclick, mouseover, drag,
* Keyboard events (keyup, etc.)

* Form events (submit, change, input)
 Mutation events (DOMContentLoaded, etc.

e HTML5 events (invalid, loadeddata, etc.)

e CSS events (animations etc.)

Category

Mouse

Keyboard

HTML
framelobject

HTML form
User

interface

Mutation

Progress

Type

click

dbiclick
mousedown
mouseup
mouseover
mousemovelo!
mouseout

dragstart
drag
dragenter

dragleave

aragover

dragend

keydown
keypress
keyup

Ioad

unioad

error

resize

scroll

select
change

submit

reset

focus

blur

focusin

focusout

DOMActivate
DOMSubtreeModified
DOMNodelnserted
DOMNodeRemoved
DOMNadeRemovedFromDocument
DDOMNodelnsertedintoDocument
DOMAftriModified
DOMCharacterDataModified
Ioadstart

progress.

error
abort

Ioad

loadend

Attribute

onclick

ondbiclick
onmousedown
onmouseup
onmouseover
onmousemove
onmouseout

ondragstart
ondrag
ondragenter
ondragleave
ondragover
ondrop

ondragend

onkeydown
onkeypress

onkeyup

onload

onunioad

onabort
onerror

onresize
onscroll
onselect

onchange

onsubmit

onreset

onfocus

ont

(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)

(none)

(none)

(none)

(none)

(none)

Description

Fires when the pointing device button is clicked over an element. A click is
defined as a mousedown and mouseup over the same screen location. The
sequence of these events is:

= mousedown

» mouseup

= click

Fires when the pointing device button is double-clicked over an element
Fites when the pointing device button is pressed over an element

Fires when the pointing device button s released over an element

Fires when the pointing device is moved onto an element

Fires when the pointing device is moved while it is over an element
Fires when the pointing device is moved away from an element

Fired on an element when a drag is started.

This event is fired at the source of the drag, that is, the element where
dragstart was fired, during the drag operation.

Fired when the mouse is first moved over an element while a drag is occurring.

This event is fired when the mouse leaves an element while a drag is
occurting

This event is fired as the mouse is moved over an element when a drag is
occurting

The drop event is fired on the element where the drop ocours at the end of the
drag operation.

The source of the drag will receive a dragend event when the drag operafion is
complete, whether it was successful or not

ypress, when a key on is pressed.
Fires after keydown, when a key on the keyboard is pressed.
Fires when a key on the keyboard is released

ires when the user agent finishes loading all content within a document,
including window, frames, objects and images

For elements, it fires when the target element and all of its
content has finished loading

tes when the user agent removes all content from a window of frame

For elements, it fires when the target element or any of its content
has been remove

Fires when an is stopped from pletely loaded
Fires when an object/image/firame cannot be loaded properly

Fires when a document view is resized

res when an element or document view is scrolled

Fires when a user selects some text in a fext field, including input and textarea

Fires when a control loses the input focus and its value has been modified
since gaining focus

Fires when a form is submitied
Fires when a form is reset

Fires when an element receives focus ether via the pointing device of by tap
navigation

Fires when an element loses focus either via the pointing device or by tabbing
navigation

Similar to HTML focus event, but can be applied to any focusable element
‘Similar to HTML blur event, but can be applied to any focusable element

Similar to XUL command event. Fires when an element is activated, for
instance, thiough a mouse click or a keypress.

Fires when the subtree is modified
Fires when a node has been added as a child of another node
Fires when a node has been removed from a DOM-tree

Fires when a node is being removed from a document

Fires when a node is being inserted into a document

Fires when an attribute has been modified

Fires when the character data has been modified

Progress has begun

In progress. After loadstart has been dispatched.

Progression failed. After the last progress has been dispaiched, or after
loadstart has been dispalched if progress has not been dispatched.

Progression is terminated. After the last progress has been dispatched, or after
loadstart has been dispatched if progress has not been dispatched.

Progression is successful. After the last progress has been dispaiched, o after
Ioadstart has been dispalched if progress has not been dispatched.

Progress has stopped. After one of erfor, abort, of load has been dispatched.

Bubbles

Yes

Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes
Yes

Yes

Yes

No, except that a scrol event
on document must bubble to
the window™!

Yes
Yes

Yes

Yes

Yes

Yes
Yes
Yes
No
No
Yes
Yes
No
No

No
No

No

No

https://en.wikipedia.org/wiki/DOM events

Applicazioni Web | - Web Applications | - 2024/2025

Cancelable

No

No

No
No
No

No

No

No

No

No

No

No
No

No
No
No
No
No
No
No
No
No

No

No

No

No

https://en.wikipedia.org/wiki/DOM_events

Preventing Default Behavior

 Many events cause a default behavior
— Click on link: go to URL

— Click on submit button: form is sent

e Can be prevented by event.preventDefault()

Applicazioni Web | - Web Applications | - 2024/2025

The React Handbook, Flavio Copes
https://flaviocopes.com/page/react-handbook/

A first high-level run about the main design concepts in React

DESIGN PRINCIPLES

Applicazioni Web | - Web Applications | - 2024/2025

https://flaviocopes.com/page/react-handbook/

React Key Concepts

* Declarative approach * Functional design approach
— Never explicitly manipulate the — Components as functions
DOM — Re-render everything on every
— Never explicitly define the order of change (Virtual DOM)
operations — Explicit management of the state of
— Just define how each component is the application

going to render itself

ApplicazioniWeb | - Web Applications |- 2024/2025

React is Functional

» Ul Fragment = f (state, props)

e Many components do not need to manage state
* Ul Fragment =f(props)

— |dempotent
— Immutable

* Jargon note: props = properties

http://slides.com/johnlynch/reactjs e

Applicazioni Web | - Web Applications | - 2024/2025

http://slides.com/johnlynch/reactjs

Immutability

* Reacts exploits Immutability of objects, for ease of programming and
efficiency of processing

 Component ‘props’ are immutable (read-only by the component)

e Component ‘state’ is not directly mutable (can be changed only
through special calls)

* Functions are ‘pure’ (have no side-effects besides computing the return

value)
— ldempotency (re-rendering the same component always yields the same result)

— Predictability

Applicazioni Web | - Web Applications | - 2024/2025

Re-Rendering

 The application is made of Components
* The entire application is re-rendered:

— Every time a state is changed
— Every time a property is changed

e Each Component will re-build itself from scratch
— With minor variations, or
— Radically different

e Performance?

Applicazioni Web | - Web Applications | - 2024/2025

Re-Rendering Performance

 Modifications to the DOM are expensive (re-computing layout and
updating GUI)
* React implements a Virtual DOM layer
— Internal in-memory data structure, optimized and very fast to update
— Corrects some DOM anomalies and asymmetries
— Manages its own set of “synthetic” events

— After components re-render, React computes the difference between the “old”
DOM and the new modified Virtual DOM

— Only modifications and differences are selectively applied to the browser’s DOM,
in batch

Applicazioni Web | - Web Applications | - 2024/2025

Update Cycle

e Build new Virtual DOM tree J& 3& J& W
e Diff with old one

StateChange —» Compute Diff —— Re-render

e Compute minimal set of changes

e Putthemin a queue J{% Ji}é J& Browser
e Batch render all changes to browser

https://www.oreilly.com/library/view/learnin
g-react-native/9781491929049/ch02.html

http://slides.com/johnlynch/reactjs e

Applicazioni Web | - Web Applications | - 2024/2025

http://slides.com/johnlynch/reactjs
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch02.html
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch02.html

Synthetic Events

 React implements its own event system
* Asingle native event handler at root of each component
 Normalizes events across browsers

 Decouples events from DOM

http://slides.com/johnlynch/reactjs e

Applicazioni Web | - Web Applications | - 2024/2025

http://slides.com/johnlynch/reactjs

How React Code is integrated in the DOM

/ DOM container node
const container =

, . \ React element
Render element into container

ApplicazioniWeb | - Web Applications |- 2024/2025

JSX Syntax

const container = const container =
document.getElementById('myapp'); document.getElementById('myapp');
const root = createRoot(container); const root = createRoot(container);
root.render(root.render(

JSX Syntax _ JS callsto React.createElement
ey i Equivalent 1= ==mmTmooommm s s s s s e e e I
| <div id="test"> : ! React.DOM.div(:
| |
| <h1>A title</hl> i L { id: 'test' }, !
1 | : 1 . 1 :
i <p>A paragraph</p> i i React.DOM.h1(null, 'A title'), i
| </div> | . React.DOM.p(null, 'A paragraph') !

S ;
)s)
Transpiling
(Babel)

Applicazioni Web | - Web Applications | - 2024/2025

Components

* Everything on a page is a
Component

— Even simple HTML tags
(React.DOM.element)

e Components may be nested

 ReactDOM.createRoot().render()
builds a component and attaches

it to a DOM container

A blog posts listing page

Blog post

About

Blog post

Blog post with image preview

Links

ApplicazioniWeb | - Web Applications |- 2024/2025

Defining Custom Components

As a function, returning DOM elements The function may receive some props

ApplicazioniWeb | - Web Applications |- 2024/2025

Types of Components

Presentational Components Container Components

e Generate DOM nodes to be * Manage the state for a group of
displayed children

Do not manage application state ¢ May interact with the back-end

* Might have some internal state, * Create (presentational) children
uniquely for presentation to display the information

purposes

ApplicazioniWeb | - Web Applications |- 2024/2025

Props and State

* Props (properties) are passed to a component

by its parent Understanding
ReactJS Props

— Values (strings, objects, ...) to configure how the

. lProps
component displays or behaves o~
* Top-to-bottom data flow ‘
— Functions (callbacks) to access the parent’s Component Component | Component

methods l l

* Bottom-to-top action requests Component Component

https://www.techdiagonal.com/reactjs _courses/beginner/understanding-reactjs-props/

Applicazioni Web | - Web Applications | - 2024/2025

https://www.techdiagonal.com/reactjs_courses/beginner/understanding-reactjs-props/

Props and State

e State is a set of variables local to the

component Understanding

— Initialized with default value or by props’ values SEHERE HifEs

— Can be mutated only by calling specific methods Cmpit
* Asynchronous ﬁ*’
* Will initiate re-rendering of the Virtual DOM Component Component Component

— Current state value can be passed to children (as l l
props)

Component Component

https://www.techdiagonal.com/reactjs _courses/beginner/understanding-reactjs-props/

Applicazioni Web | - Web Applications | - 2024/2025

https://www.techdiagonal.com/reactjs_courses/beginner/understanding-reactjs-props/

Unidirectional Data Flow

e State is passed to the view and to
child components

* Actions are triggered by the view

VlEW FCT loNS

* Actions can update the state
* The state change is passed to the
view and to child component

CTATE

ApplicazioniWeb | - Web Applications |- 2024/2025

Corollary

e A state is always owned by one Component

— Any data that's affected by this state can only affect Components below it: its
children.

* Changing state on a Component will never affect its parent, or its
siblings, or any other Component in the application
— Just its children

* For this reason, state is often moved up in the Component tree, so that
it can be shared between components that need to access it.

Applicazioni Web | - Web Applications | - 2024/2025

Installing, configuring and running the Hello World

FIRST REACT APPLICATION

Applicazioni Web | - Web Applications | - 2024/2025

Basic requirements

* Import the React library
— Import several needed libraries

* We want to use JSX
— Babel required

 We need to run on a web server

— To be able to use modules
 import inlJScode
 <script type="module'>in HTML code

— Avoid problems with CORS
* Implement polyfills for browser compatibility
e Ease app development (edit-save-reload cycle)

Applicazioni Web | - Web Applications | - 2024/2025

Starting With All The Needed Infrastructure

4

. npm create vite@latest my-app https://vitejs.dev/

From the menu, choose React, then JavaScript
. ¢d my-app
. hpm install

8 ... 65 Megabytes later ... 8
. npm run dev

Visit http://localhost:5173

N o h W N R

Applicazioni Web | - Web Applications | - 2024/2025

http://localhost:5173/
https://vitejs.dev/

e publicisthe web server root

Folder Structure _ Static files go here

e index.html isthe page template
— Published at http://localhost:xxxx
— Automatically reloads when app changes

my-app
— node_modules
— package.json

— package-lock.json — No need to modify, normally
—— -gltignore — Contains an element with id="root"
— vite.config.js loads
— index.html ---------------= * src contains all scripts
— public :

i vite.svg * src/main.jsx is theJavaScript entry point
- 3¢ . i — Contains the createRoot call to mount

— assets i :

L peact.svg i the App in the #root element

— App.css ; — Do not touch, normally

— App.jsx <--------p : . : .

L index.css P e src/App.jsx isthe file containing your

. ¢ mmmmmmm- i F— . .
— main.jsx $IIITTIT application
mounts

— Develop here!
— Feel free to import other components

ApplicazioniWeb | - Web Applications |- 2024/2025

http://localhost:3000/

Importing/Exporting

e The browser uses “ES6
Modules”
— ECMA Standard

Uses import/export
keywords

— The require function used in
Node.js doesn’t work here

Name Export v Name Import

import { name } from '

export const name = 'value'

Default Export

export default 'value' import anyName from

Rename Export

export { name as newName } import { newName } from

Export List + Rename

import {
namel as newNamel,

export {
namel,

newName?2
+ from '

name2 as newName2

samanthaming @ samanthaming.com ¥ samantha_ming

https://www.sama nthaming.com/tidbits/79-moduIe—cheatsheet;

ApplicazioniWeb | - Web Applications |- 2024/2025

https://www.samanthaming.com/tidbits/79-module-cheatsheet/

Example: Hello world

App.Jjsx
fu(‘;tion ButEO”(PPOPS? _i') * App must return the JSX of the
if (props.lang === 'i : .
return <button>Ciao!</button>; whole appllcatlon
else * We may use “custom components”
return <button>Hello!</button>; — Simply defined as JS functions
} — Receive ‘props’
function App() { * The lang JSX attribute becomes a
return (property props.lang
<p>
Press here: <Button lang="it' />
</p>
)
}

export default App;

ApplicazioniWeb | - Web Applications |- 2024/2025

Example: Components in a Separate File

App.Jjsx Button. jsx
import Button from './Button.jsx'; function Button(props) {
if (props.lang === 'it")
function App() { return <button>Ciao!</button>;
return (else
<p> return <button>Hello!</button>;
Premi qui: <Button lang='it' /> }
</p>
) export default Button;

}

export default App;

ApplicazioniWeb | - Web Applications |- 2024/2025

Example: Dynamic State

Button. jsx
import { useState } from "react";
function Button(props) {
let [buttonLang, setButtonLang] = useState(props.lang) ;
if (buttonLang === 'it')
return <button onClick={()=>setButtonLang('en’')}>Ciao!</button>;
else

return <button onClick={()=>setButtonLang('it"')}>Hello!</button>;

export default Button;

Applicazioni Web | - Web Applications | - 2024/2025

https://react-bootstrap.github.io/

Example: adding Bootstrap

App.jsx
import 'bootstrap/dist/css/bootstrap.min.css’;
) BOOtStrap CSS may be IOaded import { gol, Container, Row } from 'react-
“manually” from index.html bootstrap';
or, better”' import MyButton from './Button.jsx';
. functi A
* The react-bootstrap library e (PO
delivers many React Components <Containery
that mimic the various Bootstrap <Col>
classes </z(r;(lar:1 qui: <MyButton lang='it' />
— npm install react-bootstrap Z/Row?
— npm install bootstrap);</ SR>
}

export default App;

ApplicazioniWeb | - Web Applications |- 2024/2025 =

https://react-bootstrap.github.io/

https://react-bootstrap.github.io/ . .
Example: adding Bootstrap -

Button. jsx

import { useState } from "react";
import { Button } from "react-bootstrap";

function MyButton(props) {
let [buttonLang, setButtonLang] = useState(props.lang) ;

if (buttonLang === 'it")
return <Button variant='primary' onClick={()=>setButtonLang('en"')}>Ciao!</Button>

else
return <Button variant='primary' onClick={()=>setButtonLang('it')}>Hello!</Button>

export default MyButton;

Applicazioni Web | - Web Applications | - 2024/2025

https://react-bootstrap.github.io/

What’s next?

e Components and props
e JSX

e State and Hooks

* Events

* Forms

e Lifecycle

* Router

ApplicazioniWeb | - Web Applications |- 2024/2025

@O0

 These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
* You are free to:
— Share — copy and redistribute the material in any medium or format
— Adapt — remix, transform, and build upon the material
— The licensor cannot revoke these freedoms as long as you follow the license terms.

* Under the following terms:

— Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

— NonCommercial — You may not use the material for commercial purposes.

— ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

— No additional restrictions — You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

e https://creativecommons.org/licenses/by-nc-sa/4.0/

License

0O O OB

Applicazioni Web | - Web Applications | - 2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: Introduction to React
	Slide 2: Goal
	Slide 3: Why a Library?
	Slide 4: Main Resources
	Slide 5: Browser Development Tools
	Slide 6: BROWSER’S Object ModelS
	Slide 7: Browser Main Objects
	Slide 8: Browser Object Model
	Slide 9: Document Object Model
	Slide 10: Types of Nodes (Classes)
	Slide 11: Event Listeners
	Slide 12: Event Categories
	Slide 13: Preventing Default Behavior
	Slide 14: Design principles
	Slide 15: React Key Concepts
	Slide 16: React is Functional
	Slide 17: Immutability
	Slide 18: Re-Rendering
	Slide 19: Re-Rendering Performance
	Slide 20: Update Cycle
	Slide 21: Synthetic Events
	Slide 22: How React Code is integrated in the DOM
	Slide 23: JSX Syntax
	Slide 24: Components
	Slide 25: Defining Custom Components
	Slide 26: Types of Components
	Slide 27: Props and State
	Slide 28: Props and State
	Slide 29: Unidirectional Data Flow
	Slide 30: Corollary
	Slide 31: First React Application
	Slide 32: Basic requirements
	Slide 33: Starting With All The Needed Infrastructure
	Slide 34: Folder Structure
	Slide 35: Importing/Exporting
	Slide 36: Example: Hello world
	Slide 37: Example: Components in a Separate File
	Slide 38: Example: Dynamic State
	Slide 39: Example: adding Bootstrap
	Slide 40: Example: adding Bootstrap
	Slide 41: What’s next?
	Slide 42: License

