
Elements, JSX, 
Components
The Foundations of React

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2024/2025



2

Outline

• React Elements

– Creating

– JSX language

• React Components

– Defining

Applicazioni Web I - Web Applications I - 2024/2025



3

Conceptual Overview
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reactDOM.render( element, targetNode ) ;

React.createElement( type, props, 
children )

<type props=…>children</type>
Elementreturns

renders

function X(props) {
    return <ElementTree>;
}

defines

<div>

predefined

include
uses

Component

https://reactjs.org/docs/react-component.html 

Element 
Treereturns

composed

https://reactjs.org/docs/react-component.html
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REACT ELEMENTS

Building block for describing web page content
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https://react.dev/learn/your-first-component

Full Stack React, Chapter “JSX and the Virtual 
DOM”

https://react.dev/learn/your-first-component
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React Element

• An element is a plain object describing a component instance or DOM 
node and its desired properties

• A ReactElement is a representation of a DOM element in the Virtual 
DOM.

• It contains only information about
– the component type (for example, a Button)

– its properties (for example, its color)

– any child elements inside it.

• Not an instance of a part of a page, but a description about how to 
construct it.
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React.createElement (1/3)

• React.createElement( type, props, children )

• Type

– String: a DOM node identified by the tag name (e.g., 'div')

– React component class/function: a user-defined component
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React.createElement (2/3)

• React.createElement( type, props, children )

• Props: a simple object {}, containing:

– DOM attributes for DOM nodes ( type, src, href, alt, … )

– Arbitrary values for React components (even array- or object-valued)

• Available as props in the Component body

– Represented as object properties (not strings like HTML attributes)
• Exceptions (reserved words): class → className, for → htmlFor
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React.createElement (3/3)

• React.createElement( type, props, children )

• Children: 

– a ReactNode object, that may be:

• A string or number: text content of the nodes

• A ReactElement (that may contain a tree of Elements)

• An array of ReactNodes

– nested Elements to be rendered as children of the element
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Conventions

• DOM Elements are always lowercase

– div p li img …

• React Components are always uppercase

– WarningButton LoginForm TaskList …

• The two types of elements can be mixed, nested, combined in any way

– React uses composition and not inheritance

• Element trees describe portions of the Virtual DOM
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JSX

A humane way of describing trees of ReactElements
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https://react.dev/learn/writing-markup-with-jsx 

Full Stack React, Chapter “JSX and the Virtual 
DOM”

React Handbook, Chapter “JSX”

https://react.dev/learn/writing-markup-with-jsx
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JSX – JavaScript Syntax Extension

• Alternative syntax for React.createElement

• XML fragments inside the JS code

– Syntax details: all tags must be </closed> or <selfclosing/>

• Transpiled by Babel into plain JS
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<MyButton color="blue" shadowSize={2}>

  Click Me

</MyButton>

React.createElement(

  MyButton,

  {color: 'blue', shadowSize: 2},

  'Click Me'

) ;

Element/Component name
Props
Children / Text content
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Components are expanded during rendering
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Components encapsulate element trees 
(generated given their properties).

React asks the Button component to 
render itself. It will generate a tree of 
elements, to replace this one.

↻ Repeat until only DOM nodes are 
present. 

<button class='button button-blue'>

  <b>

    OK!

  </b>

</button>

<Button color='blue'>

OK!

</Button>

render
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JSX Syntax

• May use <tag>…</tag> or <tag/> anywhere a JS expression is 
syntactically valid

– Not only in Components

– May also store in Arrays/Objects

– After all, they are just ReactElements generated by React.createElement!

• May enclose in (…) for clarity
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const element = <div className="main">Hello world</div>;

const element2 =  (<Message text="Hello world" />);

Note: use <tag/> if the 
component doesn’t have 

any children 
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JSX Tag Name

• <Foo> is just React.createElement(Foo,…)

– Foo must be in scope (imported or declared)
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import CustomButton from './CustomButton';

function WarningButton() {

  return <CustomButton color="red" />;

}



15

JSX Attribute Expressions

• Tag attributes are converted to props of the ReactElement

• String attributes become string-valued props

– color="blue" -> {color: 'blue'}

• Other objects may be specified as a JS expression, enclosed in {}

– shadowSize={2} -> {shadowSize: 2}

– log={true}

– color={warningLevel === 'debug' ? 'gray' : 'red'}

• Any JS expression is accepted
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JSX Children

• The content between the tags <tag>content</tag> is passed as a special 
property props.children

• Such content may be:
– A string literal

– More JSX elements (nested components)

– Any {JS expression}

– A {JS expression} returning an array of JSX elements (they are inserted as siblings)

– A JS function (may be used as a callback by the Component)

– Anything that the Component may understand (and render properly)
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<MyContainer>

  <MyFirstComponent />

  <MySecondComponent />

</MyContainer>

<MyComponent>Hello 
world!</MyComponent>
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JSX Child Expressions

• JS expressions in {} may be used to specify element children

• One child (or an array of children) are generated by an expression

– <JSX> inside {JS} inside <JSX> inside JS. Totally Legit. 

• undefined, null or Booleans (true, false) are not rendered

– Useful for conditionally including children
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const Menu = (<ul>{loggedInUser ? <UserMenu /> : <LoginLink />}</ul>)

return (<ul>

  <li>Menu</li>

  {userLevel === 'admin' && renderAdminMenu()}

</ul>)
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Render Children Components

• In the component, you may render {props.children} to include the 
nested elements
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return (

  <Container>

    <Article headline="An interesting 
Article">

      Content Here

    </Article>

  </Container>

)

function Container (props) {

    return (<div className="container">

      {props.children}

    </div>);

}
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Boolean HTML Attributes in JSX

• In HTML some attributes do not have a value. Their simple presence 
“activates” a behavior

– HTML: <option value='WA' selected>Washington</option>

– HTML: <input name='Name' disabled />

• In JSX, a Boolean value may be given

– True, for the presence of the attribute (optional in recent React versions)

– False (or nothing) for the absence of the attribute

– JSX: <option value='WA' selected={true}>Washington</option>

– JSX : <input name='Name' disabled={true} />
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Comments in JSX

• There are no comments in JSX

• The HTML/XML comments syntax <!-- … --> does not work

• If you want to insert comments, you must do that in an embedded JS 
expression (using JS syntax inside {})

{/* … */}

• Yes, it’s ugly
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DOM Attribute Names

• When passing props to a DOM native node, some differences exist

• Attribute names are camelCase

– HTML onchange → JSX onChange

• The style attribute accepts an object and not a string

– <div style={{color: 'white'}}>Hello World!</div>

– Object keys are CSS Properties, and are camelCase (e.g., margin-top → 
marginTop)

– Object values are CSS values, represented as strings
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JSX Spread Syntax

• Shortcut syntax for passing all properties of an object as props to a React 
Component
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const welcome = {msg: "Hello", recipient: 
"World"} ;

<Component

  msg={welcome.msg}

  recipient={welcome.recipient} />

const welcome = {msg: "Hello", recipient: 
"World"} ;

<Component {...welcome} />

// properties of the welcome object

// are “spread” as individual props

// with the same name



23

JSX Spread Example (Property Passthrough)

const Button = props => {
  const { kind, ...other } = props;
  const className = kind === "A" ? "ABtn" : "BBtn";
  return <button className={className} {...other} />;
};

const App = () => {
  return (
    <div>
      <Button kind="primary" 
        onClick={() => console.log("clicked!")}>
        Hello World!
      </Button>
    </div>
  );
};
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• The ‘kind’ property is 
“consumed” by <Button>

• All other properties 
(…other) are passed to the 
child <button>

• In this way, <App> can 
specify the kind to Button 
and all other properties to 
“pass through” down the 
hierarchy
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JSX Syntax Reminders

• The HTML class attribute is called className

– Useful to add CSS classes for layout (e.g. className='d-block vh-100')

• The HTML for attribute is called htmlFor

• HTML entities (&lt; &amp; &copy; &star; etc…) may not be supported 
directly in older JSX

– Use the corresponding Unicode character (< & © ☆) inside a string in JS {'☆'}

– Alternatively, use a Unicode Escape sequence: {'\u2606'}
• See: https://www.toptal.com/designers/htmlarrows/ 
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https://www.toptal.com/designers/htmlarrows/
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REACT COMPONENTS: INTRO

Putting together the building blocks
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https://react.dev/learn/passing-props-to-a-
component

https://react.dev/learn/thinking-in-react

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

https://react.dev/learn/passing-props-to-a-component
https://react.dev/learn/passing-props-to-a-component
https://react.dev/learn/thinking-in-react
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Declaring Components

Components (as functions)

const Button = ( props ) => (

<Element>...</Element>

);

function Button(props) {

 return <Element>...</Element> ;

}
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• Components:

• Take props as their input

• Return the elements as their 
output
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Components (as functions)

• Defined as function statement, function expression or arrow expression

• Receive (props) argument

• Must return a React Element tree

• The returned elements are function of the props

• Must be a pure function (no side-effects) and idempotent

• State and lifecycle may be managed with the Hooks mechanism
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Tips for Creating Components

• It is normal to create many different “small” components

• Each component is constructed by composing other components

– Components may be repeated (with different props)

– It’s up to the parent to determine the children’s props

• If a component becomes too complex, try to extract small re-usable 
parts as independent components
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Lists and Keys (1/2)

function NumberList(props) {

  const numbers = props.numbers;

  const listItems = numbers.map(

    (number) => <li>{number}</li> );

  return (<ul>{listItems}</ul>);

}

Function App(props) {

  const numbers = [1, 2, 3, 4, 5];

  return <NumberList 
numbers={numbers}/>;

}

• NumberList generates a <ul> 
containing <li> for each of the 
numbers in props.numbers

• Whenever you construct a list of 
elements, you must pass a 
unique key attribute to identify 
each item

• Unique keys help React identify 
which items have changed, are 
added, or are removed. 
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https://react.dev/learn/rendering-lists 

https://react.dev/learn/rendering-lists
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Lists and Keys (2/2)

• Always assign to each item in the list a special ‘key’ attribute, with 
unique values
– <li key={number}>{number}</li>

• Most likely, we may reuse unique IDs from the data itself
– <li key={todo.id}>{todo.text}</li>

• Keys must be specified when building the array of components
– Usually in the .map() call, in the ‘container’ component

• Uniqueness is only required within the same list
– Not globally on the page

• Keys are not available as props in the component
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31

React Fragments

• A component should always return a tree of elements, with a single root.

• To return a list of elements, you must include them in some “container” 
(such a <div>)

– This generates an “extra” DOM node, and in some contexts it might be invalid

• The special node <React.Fragment> may be used to wrap a list of 
element into a single root.

– React.Fragment will not generate any node at the DOM level

• A shortcut syntax for fragments is <> … </>

Applicazioni Web I - Web Applications I - 2024/2025
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License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format 
– Adapt — remix, transform, and build upon the material 
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were 

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or 
your use. 

– NonCommercial — You may not use the material for commercial purposes. 
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions 

under the same license as the original. 
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict 

others from doing anything the license permits. 

• https://creativecommons.org/licenses/by-nc-sa/4.0/ 
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https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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