
Elements, JSX,
Components
The Foundations of React

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2024/2025

2

Outline

• React Elements

– Creating

– JSX language

• React Components

– Defining

Applicazioni Web I - Web Applications I - 2024/2025

3

Conceptual Overview

Applicazioni Web I - Web Applications I - 2024/2025

reactDOM.render(element, targetNode) ;

React.createElement(type, props,
children)

<type props=…>children</type>
Elementreturns

renders

function X(props) {
 return <ElementTree>;
}

defines

<div>

predefined

include
uses

Component

https://reactjs.org/docs/react-component.html

Element
Treereturns

composed

https://reactjs.org/docs/react-component.html

4

REACT ELEMENTS

Building block for describing web page content

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/learn/your-first-component

Full Stack React, Chapter “JSX and the Virtual
DOM”

https://react.dev/learn/your-first-component

5

React Element

• An element is a plain object describing a component instance or DOM
node and its desired properties

• A ReactElement is a representation of a DOM element in the Virtual
DOM.

• It contains only information about
– the component type (for example, a Button)

– its properties (for example, its color)

– any child elements inside it.

• Not an instance of a part of a page, but a description about how to
construct it.

Applicazioni Web I - Web Applications I - 2024/2025

6

React.createElement (1/3)

• React.createElement(type, props, children)

• Type

– String: a DOM node identified by the tag name (e.g., 'div')

– React component class/function: a user-defined component

Applicazioni Web I - Web Applications I - 2024/2025

7

React.createElement (2/3)

• React.createElement(type, props, children)

• Props: a simple object {}, containing:

– DOM attributes for DOM nodes (type, src, href, alt, …)

– Arbitrary values for React components (even array- or object-valued)

• Available as props in the Component body

– Represented as object properties (not strings like HTML attributes)
• Exceptions (reserved words): class → className, for → htmlFor

Applicazioni Web I - Web Applications I - 2024/2025

8

React.createElement (3/3)

• React.createElement(type, props, children)

• Children:

– a ReactNode object, that may be:

• A string or number: text content of the nodes

• A ReactElement (that may contain a tree of Elements)

• An array of ReactNodes

– nested Elements to be rendered as children of the element

Applicazioni Web I - Web Applications I - 2024/2025

9

Conventions

• DOM Elements are always lowercase

– div p li img …

• React Components are always uppercase

– WarningButton LoginForm TaskList …

• The two types of elements can be mixed, nested, combined in any way

– React uses composition and not inheritance

• Element trees describe portions of the Virtual DOM

Applicazioni Web I - Web Applications I - 2024/2025

10

JSX

A humane way of describing trees of ReactElements

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/learn/writing-markup-with-jsx

Full Stack React, Chapter “JSX and the Virtual
DOM”

React Handbook, Chapter “JSX”

https://react.dev/learn/writing-markup-with-jsx

11

JSX – JavaScript Syntax Extension

• Alternative syntax for React.createElement

• XML fragments inside the JS code

– Syntax details: all tags must be </closed> or <selfclosing/>

• Transpiled by Babel into plain JS

Applicazioni Web I - Web Applications I - 2024/2025

<MyButton color="blue" shadowSize={2}>

 Click Me

</MyButton>

React.createElement(

 MyButton,

 {color: 'blue', shadowSize: 2},

 'Click Me'

) ;

Element/Component name
Props
Children / Text content

12

Components are expanded during rendering

Applicazioni Web I - Web Applications I - 2024/2025

Components encapsulate element trees
(generated given their properties).

React asks the Button component to
render itself. It will generate a tree of
elements, to replace this one.

↻ Repeat until only DOM nodes are
present.

<button class='button button-blue'>

 OK!

</button>

<Button color='blue'>

OK!

</Button>

render

13

JSX Syntax

• May use <tag>…</tag> or <tag/> anywhere a JS expression is
syntactically valid

– Not only in Components

– May also store in Arrays/Objects

– After all, they are just ReactElements generated by React.createElement!

• May enclose in (…) for clarity

Applicazioni Web I - Web Applications I - 2024/2025

const element = <div className="main">Hello world</div>;

const element2 = (<Message text="Hello world" />);

Note: use <tag/> if the
component doesn’t have

any children

14

JSX Tag Name

• <Foo> is just React.createElement(Foo,…)

– Foo must be in scope (imported or declared)

Applicazioni Web I - Web Applications I - 2024/2025

import CustomButton from './CustomButton';

function WarningButton() {

 return <CustomButton color="red" />;

}

15

JSX Attribute Expressions

• Tag attributes are converted to props of the ReactElement

• String attributes become string-valued props

– color="blue" -> {color: 'blue'}

• Other objects may be specified as a JS expression, enclosed in {}

– shadowSize={2} -> {shadowSize: 2}

– log={true}

– color={warningLevel === 'debug' ? 'gray' : 'red'}

• Any JS expression is accepted

Applicazioni Web I - Web Applications I - 2024/2025

16

JSX Children

• The content between the tags <tag>content</tag> is passed as a special
property props.children

• Such content may be:
– A string literal

– More JSX elements (nested components)

– Any {JS expression}

– A {JS expression} returning an array of JSX elements (they are inserted as siblings)

– A JS function (may be used as a callback by the Component)

– Anything that the Component may understand (and render properly)

Applicazioni Web I - Web Applications I - 2024/2025

<MyContainer>

 <MyFirstComponent />

 <MySecondComponent />

</MyContainer>

<MyComponent>Hello
world!</MyComponent>

17

JSX Child Expressions

• JS expressions in {} may be used to specify element children

• One child (or an array of children) are generated by an expression

– <JSX> inside {JS} inside <JSX> inside JS. Totally Legit.

• undefined, null or Booleans (true, false) are not rendered

– Useful for conditionally including children

Applicazioni Web I - Web Applications I - 2024/2025

const Menu = ({loggedInUser ? <UserMenu /> : <LoginLink />})

return (

 Menu

 {userLevel === 'admin' && renderAdminMenu()}

)

18

Render Children Components

• In the component, you may render {props.children} to include the
nested elements

Applicazioni Web I - Web Applications I - 2024/2025

return (

 <Container>

 <Article headline="An interesting
Article">

 Content Here

 </Article>

 </Container>

)

function Container (props) {

 return (<div className="container">

 {props.children}

 </div>);

}

19

Boolean HTML Attributes in JSX

• In HTML some attributes do not have a value. Their simple presence
“activates” a behavior

– HTML: <option value='WA' selected>Washington</option>

– HTML: <input name='Name' disabled />

• In JSX, a Boolean value may be given

– True, for the presence of the attribute (optional in recent React versions)

– False (or nothing) for the absence of the attribute

– JSX: <option value='WA' selected={true}>Washington</option>

– JSX : <input name='Name' disabled={true} />

Applicazioni Web I - Web Applications I - 2024/2025

20

Comments in JSX

• There are no comments in JSX

• The HTML/XML comments syntax <!-- … --> does not work

• If you want to insert comments, you must do that in an embedded JS
expression (using JS syntax inside {})

{/* … */}

• Yes, it’s ugly

Applicazioni Web I - Web Applications I - 2024/2025

21

DOM Attribute Names

• When passing props to a DOM native node, some differences exist

• Attribute names are camelCase

– HTML onchange → JSX onChange

• The style attribute accepts an object and not a string

– <div style={{color: 'white'}}>Hello World!</div>

– Object keys are CSS Properties, and are camelCase (e.g., margin-top →
marginTop)

– Object values are CSS values, represented as strings

Applicazioni Web I - Web Applications I - 2024/2025

22

JSX Spread Syntax

• Shortcut syntax for passing all properties of an object as props to a React
Component

Applicazioni Web I - Web Applications I - 2024/2025

const welcome = {msg: "Hello", recipient:
"World"} ;

<Component

 msg={welcome.msg}

 recipient={welcome.recipient} />

const welcome = {msg: "Hello", recipient:
"World"} ;

<Component {...welcome} />

// properties of the welcome object

// are “spread” as individual props

// with the same name

23

JSX Spread Example (Property Passthrough)

const Button = props => {
 const { kind, ...other } = props;
 const className = kind === "A" ? "ABtn" : "BBtn";
 return <button className={className} {...other} />;
};

const App = () => {
 return (
 <div>
 <Button kind="primary"
 onClick={() => console.log("clicked!")}>
 Hello World!
 </Button>
 </div>
);
};

Applicazioni Web I - Web Applications I - 2024/2025

• The ‘kind’ property is
“consumed” by <Button>

• All other properties
(…other) are passed to the
child <button>

• In this way, <App> can
specify the kind to Button
and all other properties to
“pass through” down the
hierarchy

24

JSX Syntax Reminders

• The HTML class attribute is called className

– Useful to add CSS classes for layout (e.g. className='d-block vh-100')

• The HTML for attribute is called htmlFor

• HTML entities (< & © ☆ etc…) may not be supported
directly in older JSX

– Use the corresponding Unicode character (< & © ☆) inside a string in JS {'☆'}

– Alternatively, use a Unicode Escape sequence: {'\u2606'}
• See: https://www.toptal.com/designers/htmlarrows/

Applicazioni Web I - Web Applications I - 2024/2025

https://www.toptal.com/designers/htmlarrows/

25

REACT COMPONENTS: INTRO

Putting together the building blocks

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/learn/passing-props-to-a-
component

https://react.dev/learn/thinking-in-react

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

https://react.dev/learn/passing-props-to-a-component
https://react.dev/learn/passing-props-to-a-component
https://react.dev/learn/thinking-in-react

26

Declaring Components

Components (as functions)

const Button = (props) => (

<Element>...</Element>

);

function Button(props) {

 return <Element>...</Element> ;

}

Applicazioni Web I - Web Applications I - 2024/2025

• Components:

• Take props as their input

• Return the elements as their
output

27

Components (as functions)

• Defined as function statement, function expression or arrow expression

• Receive (props) argument

• Must return a React Element tree

• The returned elements are function of the props

• Must be a pure function (no side-effects) and idempotent

• State and lifecycle may be managed with the Hooks mechanism

Applicazioni Web I - Web Applications I - 2024/2025

28

Tips for Creating Components

• It is normal to create many different “small” components

• Each component is constructed by composing other components

– Components may be repeated (with different props)

– It’s up to the parent to determine the children’s props

• If a component becomes too complex, try to extract small re-usable
parts as independent components

Applicazioni Web I - Web Applications I - 2024/2025

29

Lists and Keys (1/2)

function NumberList(props) {

 const numbers = props.numbers;

 const listItems = numbers.map(

 (number) => {number});

 return ({listItems});

}

Function App(props) {

 const numbers = [1, 2, 3, 4, 5];

 return <NumberList
numbers={numbers}/>;

}

• NumberList generates a
containing for each of the
numbers in props.numbers

• Whenever you construct a list of
elements, you must pass a
unique key attribute to identify
each item

• Unique keys help React identify
which items have changed, are
added, or are removed.

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/learn/rendering-lists

https://react.dev/learn/rendering-lists

30

Lists and Keys (2/2)

• Always assign to each item in the list a special ‘key’ attribute, with
unique values
– <li key={number}>{number}

• Most likely, we may reuse unique IDs from the data itself
– <li key={todo.id}>{todo.text}

• Keys must be specified when building the array of components
– Usually in the .map() call, in the ‘container’ component

• Uniqueness is only required within the same list
– Not globally on the page

• Keys are not available as props in the component

Applicazioni Web I - Web Applications I - 2024/2025

31

React Fragments

• A component should always return a tree of elements, with a single root.

• To return a list of elements, you must include them in some “container”
(such a <div>)

– This generates an “extra” DOM node, and in some contexts it might be invalid

• The special node <React.Fragment> may be used to wrap a list of
element into a single root.

– React.Fragment will not generate any node at the DOM level

• A shortcut syntax for fragments is <> … </>

Applicazioni Web I - Web Applications I - 2024/2025

32

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: Elements, JSX, Components
	Slide 2: Outline
	Slide 3: Conceptual Overview
	Slide 4: React Elements
	Slide 5: React Element
	Slide 6: React.createElement (1/3)
	Slide 7: React.createElement (2/3)
	Slide 8: React.createElement (3/3)
	Slide 9: Conventions
	Slide 10: JSX
	Slide 11: JSX – JavaScript Syntax Extension
	Slide 12: Components are expanded during rendering
	Slide 13: JSX Syntax
	Slide 14: JSX Tag Name
	Slide 15: JSX Attribute Expressions
	Slide 16: JSX Children
	Slide 17: JSX Child Expressions
	Slide 18: Render Children Components
	Slide 19: Boolean HTML Attributes in JSX
	Slide 20: Comments in JSX
	Slide 21: DOM Attribute Names
	Slide 22: JSX Spread Syntax
	Slide 23: JSX Spread Example (Property Passthrough)
	Slide 24: JSX Syntax Reminders
	Slide 25: React Components: INTRO
	Slide 26: Declaring Components
	Slide 27: Components (as functions)
	Slide 28: Tips for Creating Components
	Slide 29: Lists and Keys (1/2)
	Slide 30: Lists and Keys (2/2)
	Slide 31: React Fragments
	Slide 32: License

