
Components and
State
The Foundations of React

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2024/2025

2

Outline

• React Hooks

• React Components

– Props and State

– The useState hook

• React design process

– Top-down information flow

Applicazioni Web I - Web Applications I - 2024/2025

3

HOOKS

Supercharge function components

Applicazioni Web I - Web Applications I - 2024/2025

Full Stack React, “Appendix C: React Hooks”

React Handbook, chapter “Hooks”

https://react.dev/reference/react

https://react.dev/reference/react

4

Limitations of Function Components

• Simple

• Pure function (props->render)

• No state

• No side effects

• No lifecycle

• May define handler functions (not very useful, in absence of state)

Applicazioni Web I - Web Applications I - 2024/2025

5

Hooks

• Proposed in October 2018 – https://youtu.be/dpw9EHDh2bM

– Stable since React 16.8 (February 2019), new hooks added almost in every version

• Additions to function components to access advanced features

– Special mechanism for overcoming some limitations of “pure” functions, in a
controlled way

– Managing state, accessing external resources, having side-effects, …

• One hook call for each requested functionality

– Hooks = special functions called by function components

Applicazioni Web I - Web Applications I - 2024/2025

https://youtu.be/dpw9EHDh2bM

6

Most Popular Hooks

Hook Purpose

useState Define a state variable in the component

useEffect Define a side-effect during the component lifecycle

useContext Act as a context consumer for the current component

useReducer Alternative to useState for Redux-like architectures or complex state logic

useMemo “Memoizes” a value (stores the result of a function and recomputes it only if parameters change)

useCallback Creates a callback function whose value is memoized

useRef Access to childrens’ ref properties

useLayoutEffect Like useEffect, but runs after DOM mutations

useDebugValue Shows a value in the React Developer Tools

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/reference/react

https://react.dev/reference/react

7

COMPONENTS: PROPS AND STATE

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/learn/describing-the-ui

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”
and “Appendix C: React Hooks”

React Handbook, Chapters “Props”, “State”, and
“Hooks”

https://react.dev/learn/managing-state

https://react.dev/learn/describing-the-ui
https://react.dev/learn/managing-state

8

Props, State, Context

Applicazioni Web I - Web Applications I - 2024/2025

React component

props

context

state

element tree

Child
component

Child
component

Child
component

props
props

props

9

Props, State, Context

• Props are immutable pieces of data that are passed into child
components from parents

• State is where a component holds data, locally

– When state changes, usually the component needs to be re-rendered

– State is private to the component and is mutable from inside the component, only

• Context is a sort of “global” and “implicit” props, that are automatically
passed to all interested components (later in the course…)

Applicazioni Web I - Web Applications I - 2024/2025

10

Passing Props

• In JSX, every attribute is converted to a prop

– <Header headerText='Hello'/>

– props.headerText will contain the string "hello"

• props is the argument of the Component Function and collects all
passed props

– They are all read-only

• May be any JS object, or other React elements

– <UserError level={3}/>

– <ResultsTable displayData={latestResults}/>

Applicazioni Web I - Web Applications I - 2024/2025

11

State

• An object containing local data, private to a component, that may be
mutated by the component itself

• To define a state variable, use the useState hook

Applicazioni Web I - Web Applications I - 2024/2025

12

useState

• Creates a new state variable
– Usually, a “simple” value

– May be an object

– Does not need to represent the whole
complete component state

• It returns
– A reference to the current value

– A function to update the state value

• Update
– With the new value

– With a callback function

Applicazioni Web I - Web Applications I - 2024/2025

https://daveceddia.com/usestate-hook-examples/

import React, { useState } from 'react';

function ShortText(props) {

 const [hidden, setHidden] = useState(true);

 return (

 {hidden ?

 `${props.text.substr(0, props.
maxLength)}...` : props.text }

 {hidden ? (

 setHidden(false)}>more

) : (

 setHidden(true)}>less

)}

);

}

https://daveceddia.com/usestate-hook-examples/

13

Creating a State Variable

• import{ useState } from
'react';

• const [hidden, setHidden]
= useState(true);
– Creates a new state variable

– hidden: name of the variable

– setHidden: update function

– true: default (initial) value

– Array destructuring assignment to
assign 2 values at once

• Creates a state variable of any type
– Remembered across function calls!

• The default value sets the initial
value (and type)

• The variable name can be used
inside the function (to affect
rendering)

• The setVariable() function will
replace the current state with the
new one
– And trigger a re-render

Applicazioni Web I - Web Applications I - 2024/2025

14

Example

function WelcomeButton(props) {

 let [english, setEnglish] =

 useState(true) ;

 return (<button>

 {english ? 'Hello' : 'Ciao'}

 </button>) ;

}

• Call useState with the initial
version of an object describing
the component state

• Inside the component, you may
refer the state variable to
customize the result according to
the current state

Applicazioni Web I - Web Applications I - 2024/2025

15

Updating the State

• All modifications to the state must be requested through
setVariable(newValue)

• Never n-e-v-e-r modify the state variable directly

– Always use the setVariable function

• It will apply the modification asynchronously (not immediately)

Applicazioni Web I - Web Applications I - 2024/2025

16

Updating the State

• With a new value

– Dependent on props and constant
values

– Will replace the current one

– Should have the same type (for
consistent rendering)

• With a function
(oldState) => { return newState; }

– Executed as a callback

– When the new state depends on
the old state

– The function return value will
replace the current state

• Must return a new state value

• Must not mutate the passed-in state

Applicazioni Web I - Web Applications I - 2024/2025

setHidden(false) ; setSteps(oldSteps => oldSteps + 1);

17

Function or Object in setVariable?

• If the logic for computing the next state depends on the current state,
always use a function

• setCounter(counter+1)
– counter is evaluated when setCounter is called

– The new state will be assigned later, asynchronously

– In case many asynchronous requests are made, some update may rely on out-of-
date information

• setCounter((cnt)=>(cnt+1))
– The arrow function will be evaluated when the async call is made, with an up-to-

date value of cnt: guaranteed to have the latest value

Applicazioni Web I - Web Applications I - 2024/2025

https://medium.com/@wisecobbler/using-a-function-in-
setstate-instead-of-an-object-1f5cfd6e55d1

https://medium.com/@wisecobbler/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1
https://medium.com/@wisecobbler/using-a-function-in-setstate-instead-of-an-object-1f5cfd6e55d1

18

Calling State Changes

• State changes are usually
determined by asynchronous
events

– DOM event handlers

– Server responses (e.g., API calls)

• The event handler is a function
that in turn calls setVariable

function WelcomeButton(props) {

let [english, setEnglish] =

useState(true) ;

const toggleLanguage = () => {

setEnglish(e => !e) ;

}

return (<button onClick={toggleLanguage}>
{english ? 'Hello' : 'Ciao'}

</button>);

}

Applicazioni Web I - Web Applications I - 2024/2025

19

Calling State Changes

• State changes are usually
determined by asynchronous
events

– DOM event handlers

– Server responses (e.g., API calls)

• The event handler is a function
that in turn calls setVariable

– Often implemented as an arrow
function

function WelcomeButton(props) {

let [english, setEnglish] =

useState(true) ;

return (<button

onClick={()=>setEnglish((eng)=>(!eng))}>
{english ? 'Hello' : 'Ciao'}

</button>);

}

Applicazioni Web I - Web Applications I - 2024/2025

20

The default value

• Used during the first render of the component, only

– Never used in successive renders

• May be a value, or a function

– The function is called only during the initial render

• May be computed from the props

– But will not update if the props change (beware bugs!)

– Not recommended

Applicazioni Web I - Web Applications I - 2024/2025

21

Example

function Counter(props) {
 const [count, setCount] = useState(props.initialCount);
 return (
 <>
 Count: {count}
 <button onClick={() => setCount(props.initialCount)}>Reset</button>
 <button onClick={() => setCount(prevCount => prevCount - 1)}>-</button>
 <button onClick={() => setCount(prevCount => prevCount + 1)}>+</button>
 </>
);
}

Applicazioni Web I - Web Applications I - 2024/2025

22

Multiple State Variables

• Do not use a single object for
holding many (unrelated)
properties

• Create as many state variables as
needed, they are all independent

• Component will re-render if any
state changes

• Children components will re-
render only if their props change

Applicazioni Web I - Web Applications I - 2024/2025

function Example(props) {

 [hidden, setHidden] = useState(true) ;

 [count, setCount] = useState(0) ;

 [mode, setMode] = useState('view') ;

 . . .

 setHidden(false) ;

 . . .

 setCount(c => c+1) ;

 . . .

 setMode('edit') ;

 . . .

}

23

Can Children Mutate Parent’s State?

• Each button may be selected or
not, but only one may be
selected at a time

• The information about what
button is selected may not be in
the button

• It is a state of a container
component for “button group”

Applicazioni Web I - Web Applications I - 2024/2025

24

Analysis

Applicazioni Web I - Web Applications I - 2024/2025

App

ButtonGroup

SimpleButton

button

SimpleButton

button

SimpleButton

button

…

…

props.names=['Chess', 'Poker', 'Black Jack', 'Go']

selected
(state)

props.name='Chess'
props.index=1
props.selected=true

<button> attributes
Bootstrap classes

props.name='Go'
props.index=4
props.selected=false

…

25

How To Change The Chosen Button?

• Handle onClick event from the button

• ButtonGroup must offer a method for changing the chosen option

– will call setSelected()

• The method reference must be passed down to SimpleButton, with all
other props

Applicazioni Web I - Web Applications I - 2024/2025

26

A Possible Solution

Applicazioni Web I - Web Applications I - 2024/2025

App

ButtonGroup

SimpleButton

button

SimpleButton

button

SimpleButton

button

…

…

props.names=['Chess', 'Poker', 'Black Jack', 'Go']

state.chosen props.name='Poker’
props.index=1
props.selected=false
props.choose -> choose={chooseButton}

<button> attributes
Bootstrap classes
onClick={() =>
props.choose(props.index)}

const chooseButton =
 (index) =>

 setSelected(index);

27

React Design Hints

• Try to implement stateless components instead of stateful ones

– Stateless components are more reusable

– Stateless components are faster to execute

• Move state to common ancestors (“state lifting”)

• Pass state down to the children using props

• Allow children to ask for state updates, by passing down callback
functions

Applicazioni Web I - Web Applications I - 2024/2025

28

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: Components and State
	Slide 2: Outline
	Slide 3: Hooks
	Slide 4: Limitations of Function Components
	Slide 5: Hooks
	Slide 6: Most Popular Hooks
	Slide 7: Components: Props and State
	Slide 8: Props, State, Context
	Slide 9: Props, State, Context
	Slide 10: Passing Props
	Slide 11: State
	Slide 12: useState
	Slide 13: Creating a State Variable
	Slide 14: Example
	Slide 15: Updating the State
	Slide 16: Updating the State
	Slide 17: Function or Object in setVariable?
	Slide 18: Calling State Changes
	Slide 19: Calling State Changes
	Slide 20: The default value
	Slide 21: Example
	Slide 22: Multiple State Variables
	Slide 23: Can Children Mutate Parent’s State?
	Slide 24: Analysis
	Slide 25: How To Change The Chosen Button?
	Slide 26: A Possible Solution
	Slide 27: React Design Hints
	Slide 28: License

