
Forms
The Foundations of User Interaction

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2024/2025

2

FORMS IN JSX

Forms, Events and Event Handlers

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/reference/react-
dom/components#form-components

Full Stack React, Chapter “Forms”

React Handbook, Chapter “JSX”

https://react.dev/reference/react-dom/components
https://react.dev/reference/react-dom/components

3

HTML Forms

• (Native) HTML Forms are inconsistent: different ways of handling values,
events etc. depending on the type of input element

– Consequence of backward compatibility

• For instance:

– onChange on a radio button is not easy to handle

– value in a textarea does not work, etc.

• React flattens this behavior exposing (via JSX) a more uniform interface

– Synthetic Events

Applicazioni Web I - Web Applications I - 2024/2025

4

Value in JSX forms

• The value attribute always holds the current value of the field

• The defaultValue attribute holds the default value that was set when
the field was created

• This also applies to

– textarea: the content is in the value attribute; it is NOT to be taken from the
actual content of the <textarea>…</textarea> tag

– select: do not use the <option selected> syntax, but <select
value='id'>

Applicazioni Web I - Web Applications I - 2024/2025

5

Change Events in JSX Forms

• React provides a more consistent onChange event

• By passing a function to the onChange attribute you can subscribe to
events on form fields (every time value changes)

• onChange fires when typing a single character into an input or
textarea field

• It works consistently across fields: even radio, select and checkbox
input fields fire a onChange event

Applicazioni Web I - Web Applications I - 2024/2025

6

Event Handlers

• An Event Handler callback function is called with one parameter: an
event object

• All event objects have a standard set of properties

– event.target: source of the event

• Some events, depending on categories, have more specific properties

Applicazioni Web I - Web Applications I - 2024/2025

7

Synthetic Events

• “High level events” wrap the
corresponding DOM Events

• Same attributes as DOMEvent

• target points to the source of
the event.

• In case of a form element

– target.value = current input
value

– target.name = input element
name

Applicazioni Web I - Web Applications I - 2024/2025

boolean bubbles
boolean cancelable
DOMEventTarget currentTarget
boolean defaultPrevented
number eventPhase
boolean isTrusted
DOMEvent nativeEvent
void preventDefault()
boolean isDefaultPrevented()
void stopPropagation()
boolean isPropagationStopped()
DOMEventTarget target
number timeStamp
string type

https://react.dev/reference/react-
dom/components/common#react-event-object

https://react.dev/reference/react-dom/components/common
https://react.dev/reference/react-dom/components/common

8

Synthetic Events
Category Events

Clipboard onCopy onCut onPaste

Composition onCompositionEnd onCompositionStart onCompositionUpdate

Keyboard onKeyDown onKeyPress onKeyUp

Focus onFocus onBlur

Form onChange onInput onInvalid onReset onSubmit

Generic onError onLoad

Mouse onClick onContextMenu onDoubleClick onDrag onDragEnd onDragEnter onDragExit onDragLeave onDragOver onDragStart onDrop
onMouseDown onMouseEnter onMouseLeave onMouseMove onMouseOut onMouseOver onMouseUp

Pointer onPointerDown onPointerMove onPointerUp onPointerCancel onGotPointerCapture onLostPointerCapture onPointerEnter
onPointerLeave onPointerOver onPointerOut

Selection onSelect

Touch onTouchCancel onTouchEnd onTouchMove onTouchStart

UI onScroll

Wheel onWheel

Media onAbort onCanPlay onCanPlayThrough onDurationChange onEmptied onEncrypted onEnded onError onLoadedData
onLoadedMetadata onLoadStart onPause onPlay onPlaying onProgress onRateChange onSeeked onSeeking onStalled onSuspend
onTimeUpdate onVolumeChange onWaiting

Image onLoad onError

Animation onAnimationStart onAnimationEnd onAnimationIteration

Transition onTransitionEnd
Applicazioni Web I - Web Applications I - 2024/2025

https://reactjs.org/docs/events.html

https://reactjs.org/docs/events.html

9

Tip: Defining Event Handlers

• Define the function as…

– an arrow function

– a function expression

Applicazioni Web I - Web Applications I - 2024/2025

const handler = () => { ... }

handler = function() { ... }

10

Tip: Defining Event Handlers

• Pass the name of the function as
a prop

– As a function object (not string)

– Don’t call the function

Applicazioni Web I - Web Applications I - 2024/2025

return <div handler={handler} />

return <div handler={handler()} />

return <div handler='handler' />

11

Tip: Defining Event Handlers

• Specify the name of the function
prop in the event handler

• If you need to pass parameters,
use an arrow function

Applicazioni Web I - Web Applications I - 2024/2025

return <button onClick=

 {props.handler} />

return <button onClick=

 {props.handler()} />

return <button onClick=

 {props.handler(a, b)} />

return <button onClick=

 {()=>props.handler()} />

return <button onClick=

 {()=>props.handler(a, b)} />

12

Who Owns The State?

• Form elements are inherently stateful: they hold a value

– Input text form, selection, etc.

• React components are designed to handle the state

• The props and state are used to render the component

– To correctly render the component from the virtual DOM, React needs to know
which value must be set in the form element

– Hence, on every change (onChange) React must be notified to get the new value
and update the component state

Applicazioni Web I - Web Applications I - 2024/2025

13

Where Is The Source of Truth?

Controlled Form Components

• When the React component
holds, in its state, the value to be
shown in the form element, it is
named a controlled form
component

Uncontrolled Form Components

• In some occasions, it could be
useful to keep the value directly
in the HTML form element in the
DOM: uncontrolled form
component

Applicazioni Web I - Web Applications I - 2024/2025

Preferred!

14

Controlled Form Components

Applicazioni Web I - Web Applications I - 2024/2025

React Component

Form Element

Render form element:
- value={x}
- onChange={changeX}

changeX = (event) => {
 setX(event.target.value);
}

onChange events

x displayed as value
value={x}

const [x, setX] = useState('') ;

Update
state

Setting value +
onChange makes the
form component fully

controlled

15

Controlled Form Component

• The event handler changes the state, setXXX() starts the update of the
virtual DOM that then updates the actual DOM content

Applicazioni Web I - Web Applications I - 2024/2025

function MyForm (props) {

 const [name, setName] = useState();

 return <form onSubmit={handleSubmit}>

 <label> Name:

 <input type="text" value={name}
 onChange={handleChange} />

 </label>

 <input type="submit" value="Submit" />

 </form> ;

}

handleSubmit = (event) => {

 console.log('Name submitted: ' +
 name);

 event.preventDefault();

}

handleChange = (event) => {

 setName(event.target.value) ;

};

16

Uncontrolled Form Components

Applicazioni Web I - Web Applications I - 2024/2025

React Component

Form Element

Render Form Element
- defaultValue={props.x}
- onSubmit={submitForm}

submitForm = (event) =>
{
 props.saveData(…);
}

onChange

x displayed as initial value

NO
state

onSubmit

Not setting value +
onChange makes the

form component
uncontrolled

Uncontrolled components
will not be described in depth

17

Tip: Form Submission

• The onSubmit event is generated by the <form> element

• Always call event.preventDefault() to avoid the submission (and
reloading of the page)

• Perform validation of all form data before proceeding

– Using checks on state variables (on a controlled component, they contain
updated information)

– May use validator https://github.com/validatorjs/validator.js

Applicazioni Web I - Web Applications I - 2024/2025

https://github.com/validatorjs/validator.js

18

useActionState (React 19)

• Sometimes, it is tedious to use controlled form components
– Need to write an event handler for every way data can change

– Need to declare a state for each form component

– Pipe all of the input state through a React component

• useActionState simplifies the process of handling forms
– New hook in React 19

– Remove the need for creating individual states and manually managing values,
while providing a state to the form component

– Built-in loading state available

– Improve performance as there is no state updates/re-renders on every keystroke

Applicazioni Web I - Web Applications I - 2024/2025

https://react.dev/reference/react/useActionState

https://react.dev/reference/react/useActionState

19

useActionState

• Create a component state that is
updated when a form action is
invoked
– Get a form action function and an

initial state

• It returns

– A new action that you use in your form

– The latest form state, initially set to
provided initial state

– An optional loading state that you can
use while your action is processing

Applicazioni Web I - Web Applications I - 2024/2025

import { useActionState } from "react";

const increment = async (previousState, formData) => {

 return previousState + 1;

}

function SimpleForm() {

 const [formState, formAction, isPending] =
useActionState(increment, 0);

 return (

 <form action={formAction}>

 {formState}

 <button type="submit">Increment</button>

 </form>

)

}

20

Creating a useActionState

• import{ useActionState }
from "react";

• const [state, formAction,
isPending] =
useActionState(increment,
0);
– state: name of the form state

– formAction: name of the function to
use in the form’s action attribute

– isPending: a boolean state that says
whether the form action is still pending

– increment: the action function, i.e.,
what happens when the form is
submitted

– 0: the initial state

– Array destructuring assignment to
assign 3 values at once

• Setting an initial state is not
mandatory, but recommended
– Any serializable value that represents

the entire initial state of the form

– Ignored after the action is first invoked

Applicazioni Web I - Web Applications I - 2024/2025

21

The Action Function

• const actionFunction => async(prevState, formData) {…}
– async function called when the form is submitted

• prevState, the latest available form state
– The form state is the value returned by the action function when the form was last

submitted

– At the first call, it is the initial state passed to useActionState

• formData, the data submitted by the form
– According to the standard FormData interface, https://developer.mozilla.org/en-

US/docs/Web/API/FormData

• The function automatically calls event.preventDefault()
– No need to explicitly write it!

Applicazioni Web I - Web Applications I - 2024/2025

https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData

22

Example

Applicazioni Web I - Web Applications I - 2024/2025

function MyForm (props) {

 const [state, formAction] =
useActionState(handleSubmit, {name:
props.name});

return <form action={formAction}>

 <label> Name:

 <input name="name" type="text"
defaultValue={state.name} />

 </label>

 <input type="submit" value="Submit" />

 </form> ;

}

handleSubmit = async (prevState,
formData) => {

 const submittedName =
formData.get('name');

 console.log('Name submitted: ' +
submittedName);

 return {name: submittedName };

}

23

Advanced Usages

• A form can have multiple useActionState defined

– e.g., what happens when the same form has a delete and update button

• In this case, instead of using action in the <form> component, you can
use formAction inside any form components:

– <button formAction={updateAction}>Update</button>

• useActionState works well with the other hooks and can be used
along controlled form components, if needed

Applicazioni Web I - Web Applications I - 2024/2025

24

Alternatives to Built-in React Forms

• Formik
– Keep things organized without hiding them too much

– Form state is inherently ephemeral and local: does not use state management solutions
(e.g., Redux/Flux) that would unnecessary complicate things

– Includes validation, keeping track of the visited fields, and handling form submission

– https://jaredpalmer.com/formik

• React Hook Form
– Abstract some of the form boilerplate code

– Lightweight and extensible via plugins

– Supports validation out of the box with error messages

– https://react-hook-form.com

Applicazioni Web I - Web Applications I - 2024/2025

https://jaredpalmer.com/formik
https://react-hook-form.com/

25

Tips: Handling Arrays in State

• React setXXX() with arrays requires that a new array is returned
(cannot mutate the current state)
– What is the correct way to handle arrays in React state?

• Use a new array as the value of the property
– When referencing objects, use a new object every time a property changes

• Use a callback to ensure no modifications are missed

• Typical cases -- mostly triggered by form events
– Add items

– Update items

– Remove items

Applicazioni Web I - Web Applications I - 2024/2025

https://www.robinwieruch.de/react-state-array-add-update-remove

https://www.robinwieruch.de/react-state-array-add-update-remove

26

Adding Items in array-valued state

Applicazioni Web I - Web Applications I - 2024/2025

https://www.robinwieruch.de/react-state-array-add-update-remove

// Append at the end: use .concat()

// NO .push(): it returns the number of
elements, not the array

...

const [list, setList] = useState(['a',
'b', 'c']);

...

setList(oldList =>

 return oldList.concat(newItem);

)

// Insert value(s) at the beginning
// use spread operator

...

const [list, setList] = useState(['a',
'b', 'c']);

...

setList(oldList =>
 return [newItem, ...oldList];
)

https://www.robinwieruch.de/react-state-array-add-update-remove

27

Updating Items in array-valued state

Applicazioni Web I - Web Applications I - 2024/2025

https://www.robinwieruch.de/react-state-array-add-update-remove

// Update item: use map()

...

const [list, setList] = useState([11, 42, 32]);

...

// i is the index of the element to update

setList(oldList => {

const list = oldList.map((item, j) => {

if (j === i) {

return item + 1; // update the item

} else {

return item;

}

});

 return list ;

});

https://www.robinwieruch.de/react-state-array-add-update-remove

28

Updating Items in array-of-objects state

Applicazioni Web I - Web Applications I - 2024/2025

// Update item: use map(); if items are objects, always return a new object if modified

...

const [list, setList] = useState([{id:3, val:'Foo'},{id:5, val:'Bar'}]);

...

// i is the id of the item to update

setList(oldList => {

const list = oldList.map((item) => {

if (item.id === i) {

// item.val='NewVal'; return item; // WRONG: the old object must not be reused

return {id:item.id, val:'NewVal'}; // return a new object: do not simply change content

} else {

return item;

}

});

 return list ;

});

29

Removing Items in array-valued state

Applicazioni Web I - Web Applications I - 2024/2025

https://www.robinwieruch.de/react-state-array-add-update-remove

// Remove item: use filter()

...

const [list, setList] = useState([11, 42,
32]);

...

// i is the index of the element to remove

setList(oldList=> {

return oldList.filter(

(item, j) => i !== j);

});

// Remove first item(s): use destructuring

...

const [list, setList] = useState([11, 42,
32]);

...

setList(oldList => {

const [first, ...list] = oldList;

 return list ;

});

https://www.robinwieruch.de/react-state-array-add-update-remove

30

Tip: Heuristics for State Lifting

• Presentational components
– Forms, Tables, Lists, Widgets, …

– Should contain local state to represent their display property

– Sort order, open/collapsed, active/paused, …

– Such state is not interesting outside the component

• Application components (or Container components)
– Manage the information and the application logic

– Usually don’t directly generate markup, generate props or context

– Most application state is “lifted up” to a Container

– Centralizes the updates, single source of State truth

Applicazioni Web I - Web Applications I - 2024/2025

31

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: Forms
	Slide 2: FORMS in JSX
	Slide 3: HTML Forms
	Slide 4: Value in JSX forms
	Slide 5: Change Events in JSX Forms
	Slide 6: Event Handlers
	Slide 7: Synthetic Events
	Slide 8: Synthetic Events
	Slide 9: Tip: Defining Event Handlers
	Slide 10: Tip: Defining Event Handlers
	Slide 11: Tip: Defining Event Handlers
	Slide 12: Who Owns The State?
	Slide 13: Where Is The Source of Truth?
	Slide 14: Controlled Form Components
	Slide 15: Controlled Form Component
	Slide 16: Uncontrolled Form Components
	Slide 17: Tip: Form Submission
	Slide 18: useActionState (React 19)
	Slide 19: useActionState
	Slide 20: Creating a useActionState
	Slide 21: The Action Function
	Slide 22: Example
	Slide 23: Advanced Usages
	Slide 24: Alternatives to Built-in React Forms
	Slide 25: Tips: Handling Arrays in State
	Slide 26: Adding Items in array-valued state
	Slide 27: Updating Items in array-valued state
	Slide 28: Updating Items in array-of-objects state
	Slide 29: Removing Items in array-valued state
	Slide 30: Tip: Heuristics for State Lifting
	Slide 31: License

