
React Router
Applications have more than one page…

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2024/2025

2

Outline

• Objective and problems

• A Solution, the React way: React Router

Applicazioni Web I - Web Applications I - 2024/2025

3

OBJECTIVES AND PROBLEMS

Multi-page Single Page Applications

Applicazioni Web I - Web Applications I - 2024/2025

Full Stack React, chapter “Routing”

React Handbook, chapter “React Router”

4

Supporting Complex Web Applications

• Switching between many different page layouts

• Managing the flow of navigation across a set of “pages”

• Maintaining the default web navigation conventions (back, forward,
bookmarks, …)

• Allowing URLs to convey information

• Avoiding to re-load KBs of JavaScript at every page change

• Keeping the state across page changes

• …

Applicazioni Web I - Web Applications I - 2024/2025

5

Example

Applicazioni Web I - Web Applications I - 2024/2025

• Different layout
and contents

• Some common
parts

• No “page reload”

• URL changes
accordingly

/ /profilename

/pages/?category=your
_pages

/pagename

6

Some Use Cases

• Main list / detail view

• Logged / Unlogged pages

• Sidebar navigation

• Modal content

• Main Contents vs. User Profile vs. Setting vs. …

Applicazioni Web I - Web Applications I - 2024/2025

7

Using URLs for Navigation State

• URLs determine the type of the page or the section of
the website

– Changing page ⇆ Changing the URL

• URLs also embed information about the item IDs,
referrers, categories, filters, etc.

• URLs can be shared/saved/bookmarked, and they are
sufficient for rebuilding the whole exact page

– Deep Linking

• Back and Forward buttons navigate the URL history

Applicazioni Web I - Web Applications I - 2024/2025

Example URLs on
facebook.com:

/

/profile.name

/profile.name
/posts/12341232124
22123

/pagename

/pages/?category=y
our_pages

8

Using URLs for Navigation State

• URLs determine the type of the page or the section of
the website

– Changing page ⇆ Changing the URL

• URLs also embed information about the item IDs,
referrers, categories, filters, etc

• URLs can be shared/saved/bookmarked, and they are
sufficient for rebuilding the whole exact page

– Deep Linking

• Back and Forward buttons navigate the URL history

Applicazioni Web I - Web Applications I - 2024/2025

Example URLs on
facebook.com:

/

/profile.name

/profile.name
/posts/12341232124
22123

/pagename

/pages/?category=y
our_pages

Special configuration:

➢ With any URL, the React application will always return the
same page (index.html/index.js) that will load and
mount the same App

➢ The URL content is then queried by the App to customize
the render

9

THE REACT ROUTER

React as a REST Client

Applicazioni Web I - Web Applications I - 2024/2025

https://reactrouter.com/

https://flaviocopes.com/react-router/

https://www.robinwieruch.de/react-router/

Full Stack React, chapter “Routing”

React Handbook, chapter “React Router”

https://reactrouter.com/
https://flaviocopes.com/react-router/
https://www.robinwieruch.de/react-router/

10

React Router

• The problems associated with multi-page navigation and URL
management are usually handled by router libraries

• A JavaScript Router manages

– Modifying the location of the app (the URL)

– Determining what React components to render at a given location

• In principle, whenever the user clicks on a new URL

– We prevent the browser from fetching the next page

– We instruct the React app to switch in & out components

Applicazioni Web I - Web Applications I - 2024/2025

11

React Router

• React does not contain a specific router functionality

– Different router libraries are available

• A commonly adopted one is react-router

– Current version 7.x

– npm install react-router

Applicazioni Web I - Web Applications I - 2024/2025

https://reactrouter.com/

https://github.com/remix-
run/react-router

https://reactrouter.com/
https://github.com/remix-run/react-router
https://github.com/remix-run/react-router

12

Features

• Connects React app navigation with the browser’s native navigation
features

• Selectively shows components according to the current routes

– Rules matching URL fragments

• Easy to integrate and understand; it uses normal React components

– Links to new pages are handled by <Link>, <NavLink>, and <Navigate>

– To determine what must be rendered we use <Route> and <Routes>

– Defines hooks useNavigate, useParams, useSearchParams

• The whole application is wrapped in a <Router>-like container

Applicazioni Web I - Web Applications I - 2024/2025

13

Overview of React Router

Applicazioni Web I - Web Applications I - 2024/2025

<Link to='/'>Home</Link>
<Link to='/about'>About</Link>
<Link to='/dashboard'>Dashboard</Link>

<Routes>
 <Route path="/">
 element={<Home />} />
 <Route path="/about">
 element={<About />} />
 <Route path="/dashboard">
 element={<Dashboard />} />
</Routes>

'/about'

<Router>

</Router>

<Router>

</Router>

14

Routers

• Routers can be initialized in three ways, or “modes”

1. Declarative

2. Data

3. Framework

• Features available in each mode are additive

– moving from Declarative to Data to Framework adds more features at the cost of
architectural control

• In the course, we will use the Declarative mode

– enables basic routing features and fundamental APIs

Applicazioni Web I - Web Applications I - 2024/2025

15

Types of Routers in Declarative Mode

• <BrowserRouter> uses normal URLs and the HTML5 Location API

– Recommended for modern browsers

– Requires some server configuration

– import { BrowserRouter } from 'react-router' ;

• <HashRouter> uses ‘#’ in the URL

– Compatible with older browsers

– Requires no config on the server

– Not recommended, unless for compatibility reasons

Applicazioni Web I - Web Applications I - 2024/2025

16

Types of Routers in Declarative Mode

• <BrowserRouter> uses normal URLs and the HTML5 Location API

– Recommended for modern browsers

– Requires some server configuration

– import { BrowserRouter } from 'react-router’ ;

• <HashRouter> uses ‘#’ in the URL

– Compatible with older browsers

– Requires no config on the server

– Not recommended, unless for compatibility reasons

Applicazioni Web I - Web Applications I - 2024/2025

Not needed with the React Development Server.

When served as a static bundle, all paths must be
mapped to index.html:

app.use(express.static('build'));

app.get('/*', function (req, res) {
 res.sendFile('build/index.html');
});

More on this -> next weeks!

17

Wrapping <App> with a Router

Applicazioni Web I - Web Applications I - 2024/2025

import { StrictMode } from 'react';
import { createRoot } from 'react-dom/client';
import { BrowserRouter } from 'react-router';
import App from './App.jsx';

createRoot(document.getElementById('root')).render(
 <StrictMode>
 <BrowserRouter>
 <App />
 </BrowserRouter>
 </StrictMode>,
)

Add the highlighted lines to
main.jsx

18

Selective Render

• Alternative versions of a component content must be wrapped in
<Routes>

– Each alternative is represented by a Route

– The route with the “most specific” match will be rendered

• Each <Route> specifies the URL path matching requirement

– path = '/fragment' check if the URL matches the fragment

– element = {<JSXelement/>} renders the specified JSX fragment if the
path is the best match

Applicazioni Web I - Web Applications I - 2024/2025

<Routes>
 <Route path="/" element={<Home/>} />
 <Route path="/news" element={<NewsFeed/>} />
</Routes>

19

Route matching Methods

• path = string matched against the URL
• A path is made of different URL ‘segments’ (separated by /)

– Static segment → e.g., users
– Dynamic segment → e.g., :userId
– Star segment → *

• Examples:
– /users/:userId
– /docs/*
– /
– /contact-us

• Options
– caseSensitive: the match becomes case-sensitive (default: insensitive)

• changing the default is not recommended

Applicazioni Web I - Web Applications I - 2024/2025

If the Location URL matches more than
one route path, the most specific one is
selected

20

Nesting Routes

• Routes may follow the layout hierarchy of the interface components

• It is possible to nest a <Route> inside another <Route> component

– The paths will be concatenated

– The parent <Routes> will browse, recursively, through all matching paths

– All route elements in the best matching path will be rendered

• The matching children will be rendered inside the <Outlet> component
in the parent’s render tree

– <Outlet/> specifies “where” the matching children should be rendered

– If you forget <Outlet/>, the children will not display

Applicazioni Web I - Web Applications I - 2024/2025

https://reactrouter.com/api/components/Outlet

https://reactrouter.com/api/components/Outlet

21

Example

function App() {

 return (

 <div>

 <h1>Basic Example</h1>

 <Routes>

 <Route path="/" element={<Layout />}>

 <Route path="about" element={<About />} />

 <Route path="dashboard"

 element={<Dashboard />} />

 </Route>

 </Routes>

 </div>

);

}

function Layout() {

 return (

 <div>

 <nav>... main navigation menu ...<nav>

 <hr />

 <Outlet />

 </div>

);

}

Applicazioni Web I - Web Applications I - 2024/2025

function About() {

 return (

 <div>

 <h2>About</h2>

 </div>

);

}

22

Special Routes (1/2)

• Index route

– <Route index element={<Home />} />

– A child route with no path that renders in the parent's outlet at the parent's URL

– Use cases:
• They match when a parent route matches but none of the other children match.

• They are the default child route for a parent route.

• They render when the user doesn’t have clicked one of the items in a navigation list yet.

Applicazioni Web I - Web Applications I - 2024/2025

23

Special Routes (2/2)

• Layout route

– A route without path will always be matched

– Useful to “wrap” with a common layout its children’s routes

• “No Match” route

– Special case: path="*"

– Will match only when no other routes do

– It can be used for a “Not Found” page, for example

Applicazioni Web I - Web Applications I - 2024/2025

24

Example

function App() {

 return (

 <div>

 <h1>Basic Example</h1>

 <Routes>

 <Route path="/" element={<Layout />}>

 <Route index element={<Home />} />

 <Route path="about" element={<About />} />

 <Route path="dashboard" element={<Dashboard />} />

 <Route path="*" element={<NoMatch />} />

 </Route>

 </Routes>

 </div>

);

}

function Layout() {

 return (

 <div>

 <nav>... main navigation menu ...<nav>

 <hr />

 <Outlet />

 </div>

);

}

Applicazioni Web I - Web Applications I - 2024/2025

function Home() {

 return (

 <div>

 <h2>Home</h2>

 </div>

);

}

25

Navigation

• Changing the location URL will re-
render the Router, and all Routes
will be evaluated

• Two main options:

– <Link to= > creates a router-
aware hyperlink (activated by user
clicks)

– useNavigate() returns a
function to trigger navigation
(useful inside event handlers)

Applicazioni Web I - Web Applications I - 2024/2025

26

Navigation

• Changing the location URL will re-
render the Router, and all Routes
will be evaluated

• Two main options:

– <Link to= > creates a router-
aware hyperlink (activated by user
clicks)

– useNavigate() returns a
function to trigger navigation
(useful inside event handlers)

 Warning

Never use a “plain hyperlink” <a>

Never use a “form submission”
(without useActionState)
 <form action='…'>

They will reload the whole
application (and kill the current

state)

Applicazioni Web I - Web Applications I - 2024/2025

27

Examples

function Home() {

 return (

 <div>

 <h1>Home</h1>

 <nav>

 <Link to="/">Home</Link>

 {" "}

 <Link to="about">About</Link>

 </nav>

 </div>

);

}

function Invoices() {

 const navigate = useNavigate();

 return (

 <div>

 <NewInvoiceForm

 onSubmit={(event) => {

 const newInvoice = create(event.target);

 navigate(`/invoices/${newInvoice.id}`);

 }}

 />

 </div>

);

}

Applicazioni Web I - Web Applications I - 2024/2025

All paths are relative,
unless they start with /

28

Active Navigation

• When creating menus or navigation elements, it is useful to see which
item is the currently selected one

• <NavLink> behaves like <Link>, but knows whether it is “active”

– It adds the “active” class to the rendered link (to be customized with CSS)

– You may create a callback in className={} that receives the isActive status and
decides which class to apply

– You may create a callback in style={} that receives the isActive status and
decides which CSS style(s) to apply

Applicazioni Web I - Web Applications I - 2024/2025

29

Dynamic Routes

• Routes may have parametric segments, with the :name syntax in the
path specification

– <Route path="/post/:id" element={<Post/>} />

– The ‘id’ part will be available to the element through the useParams() hook

Applicazioni Web I - Web Applications I - 2024/2025

<Route
 path="/post/:id"
 element={<Post/>} />

function Post(props) {
 const {id} = useParams();
 ...
}

30

Dynamic Routes

• Routes may have parametric segments, with the :name syntax in the
path specification

– <Route path="/post/:id" element={<Post/>} />

– The ‘id’ part will be available to the element through the useParams() hook

Applicazioni Web I - Web Applications I - 2024/2025

<Route
 path="/post/:id"
 element={<Post/>} />

function Post(props) {
 const {id} = useParams();
 ...
}

• useParams returns an object of
key/value pairs of the dynamic
params from the current URL that
were matched by the <Route path>

• Child routes inherit all params from
their parent routes

31

Example

function App() {

 return (

 <Routes>

 <Route

 path="/invoices/:invoiceId"

 element={<Invoice />}

 />

 </Routes>

);

}

function Invoice() {

 let params = useParams();

 return <h1>Invoice {params.invoiceId}</h1>;

}

Applicazioni Web I - Web Applications I - 2024/2025

function Invoice() {

let { invoiceId } = useParams();

return <h1>Invoice {invoiceId}</h1>;

}

Matches a URL like
/invoices/1234

32

Location State: Passing Information Among Pages

• When navigating, it is possible to
pass some information to the next
page, thanks to the
location.state BOM attribute

– Alternative to dynamic URLs

• The value may be retrieved with
useLocation() on the next page

– Beware: objects are serialized as
strings, avoid passing ‘complex’ objects
(e.g., dayjs objects)

const navigate = useNavigate() ;

// go to URL and send information

navigate(url, {state: userData}) ;

Applicazioni Web I - Web Applications I - 2024/2025

<Link to={url}

 state={userData} >

 . . .

</Link>

const location = useLocation();

const userData = location.state;

33

Exploiting Search Parameters

• A URL may contain some “query
search parameters”
– /products?sort=date&filter
=valid

• useSearchParams() allows
you to read and modify the query
string portion of the location
– Returns the current version of the

parameter, and a function to
modify them

– Behaves like useState

Applicazioni Web I - Web Applications I - 2024/2025

• let [params, setParams]
= useSearchParams();

– params is a standard
URLSearchParams object,
https://developer.mozilla.org/en-
US/docs/Web/API/URLSearchParam
s

– setParams receives an object of {
key: value } pairs that will replace
the current parameters

https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams

34

Summary: react-router

• Wrap main.jsx in
<BrowserRouter>

• Routing and rendering:
– <Routes>

– <Route path= element= />

– <Outlet/>

• Navigation:
– <Link to= >…</Link>

– <NavLink to= >…</NavLink>

– useNavigate()

• Parameters
– useParams() for Dynamic Routes

– useSearchParams() for URL
query strings (after “?”)

– useLocation() for retrieving
location state (set by navigate)

Applicazioni Web I - Web Applications I - 2024/2025

35

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: React Router
	Slide 2: Outline
	Slide 3: Objectives and Problems
	Slide 4: Supporting Complex Web Applications
	Slide 5: Example
	Slide 6: Some Use Cases
	Slide 7: Using URLs for Navigation State
	Slide 8: Using URLs for Navigation State
	Slide 9: The React Router
	Slide 10: React Router
	Slide 11: React Router
	Slide 12: Features
	Slide 13: Overview of React Router
	Slide 14: Routers
	Slide 15: Types of Routers in Declarative Mode
	Slide 16: Types of Routers in Declarative Mode
	Slide 17: Wrapping <App> with a Router
	Slide 18: Selective Render
	Slide 19: Route matching Methods
	Slide 20: Nesting Routes
	Slide 21: Example
	Slide 22: Special Routes (1/2)
	Slide 23: Special Routes (2/2)
	Slide 24: Example
	Slide 25: Navigation
	Slide 26: Navigation
	Slide 27: Examples
	Slide 28: Active Navigation
	Slide 29: Dynamic Routes
	Slide 30: Dynamic Routes
	Slide 31: Example
	Slide 32: Location State: Passing Information Among Pages
	Slide 33: Exploiting Search Parameters
	Slide 34: Summary: react-router
	Slide 35: License

