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Outline

• The “two servers” problem

– Two servers + CORS → we will use this, in the course

– Build + Express (single server)

– Also: Understanding Build (webpack, imports, …)
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THE “TWO SERVERS” PROBLEM

A Client and a Server walk into a bar…
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https://www.robinwieruch.de/react-fetching-
data 

Full Stack React, Chapter “Using Webpack with 
Create React App”

https://www.robinwieruch.de/react-fetching-data
https://www.robinwieruch.de/react-fetching-data
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Conceptual Architecture
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Conceptual Architecture
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Conceptual Architecture
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Issues

• Deployment

– One-server-does-all or two-separate-servers?

– Development vs. Production trade-off
• convenience/debug/turnaround time vs performance/security

– Cross-Origin security limitations

• Opportunities

– Separate the load

– Use any API Server (even 3rd party ones)
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Express
http://localhost:3000

Two Possible Solutions
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RUNNING TWO SEPARATE SERVERS

Side-by-side deployment
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https://www.newline.co/fullstack-
react/articles/using-create-react-app-with-a-
server/ 

Full Stack React, Chapter “Using Webpack with 
Create React App / Using Create React App with 
an API server”

We will use this, in 
the course

https://www.newline.co/fullstack-react/articles/using-create-react-app-with-a-server/
https://www.newline.co/fullstack-react/articles/using-create-react-app-with-a-server/
https://www.newline.co/fullstack-react/articles/using-create-react-app-with-a-server/
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Double-Server Setup

• React Web Server and HTTP API 
server are hosted separately

– Different hosts, and/or

– Different ports

• The browser:

– Receives the React application 

– Directs the API requests to the API 
server
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Double-Server Setup

• Must run two web servers

– React project: npm run dev

– Express project: node index.js

– Two projects, in two different 
directories (or different servers)

• Problem: handle CORS

– Cross-Origin Resource Sharing 

– Default security policy prevents 
loading data from other servers

– Details not discussed here
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Double-Server Setup

• React Web Server and HTTP API 
server are hosted separately

– Different hosts, and/or

– Different ports

• The browser:

– Receives the React application 

– Directs the API requests to the API 
server
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Advantages and Disadvantages

• Servers are easy to deploy

• Scalable solution: requests are 
sent to the appropriate server

• Only possible configuration if the 
HTTP API is provided by a third 
party
– Public APIs

• Need to configure cross-origin 
resource sharing (CORS) on API 
server

• Requires using absolute URLs to 
access APIs

• Wrongly configured CORS might 
be a security risk (undesired 
access to APIs from e.g., mock 
websites)
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How To Configure

• Configure CORS on API server for development

• In production mode, use different domains for React and API servers, NEVER 
allow CORS requests from any origin, always specify origin
– See also https://github.blog/security/application-security/localhost-dangers-cors-and-dns-

rebinding/ 
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// index.mjs (node express server)

import cors from 'cors';  // npm install cors

//Enable All CORS Requests (for this server)

app.use(cors());

//Use ONLY for development, otherwise restrict domain

https://github.blog/security/application-security/localhost-dangers-cors-and-dns-rebinding/
https://github.blog/security/application-security/localhost-dangers-cors-and-dns-rebinding/
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Example

API.mjs in the React Application
const APIURL=new URL('http://localhost:3000');

async function getCourses() {
return fetch(new URL('/courses', APIURL))
.then((response)=>{
if(response.ok) {

return response.json() ;
} else {

throw response.statusText;
}

})
.catch((error)=>{
throw error;

});
}

index.mjs for the API Server
import express  from 'express';
import cors from 'cors';

const app = express();
const port = 3000;
app.use(cors());

app.get('/courses', (req, res) => {
  dao.listCourses()
    .then((courses) => res.json(courses))
    .catch((dbErrorObj)=>
      res.status(503)
         .json(dbErrorObj));
});

app.listen(port, () => console.log(`Example app 
listening at http://localhost:${port}`));
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Called in useEffect()

Calls dao.mjs
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DEPLOYING A BUILD INSIDE A SERVER

Packing and moving the React application into any web server
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https://vitejs.dev/guide/static-deploy.html

https://vitejs.dev/guide/static-deploy.html
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Deploying the React Bundle

• React does not need to run in the 
development server

• npm run build will create a 
“production bundle” with all the 
contents needed to run the 
application

• This bundle is composed of static 
files (html, js, assets) and may be 
served by any webserver (including 

Apache, nginx, express, php, …)
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Build Command
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npm run build

Creates everything 
under ./dist

https://vitejs.dev/guide/stat
ic-deploy.html 

https://vitejs.dev/guide/static-deploy.html
https://vitejs.dev/guide/static-deploy.html
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What Does “build” Do?

• Most of the work in “building” the static application is done by Babel 
and Webpack

– Babel translates all JSX (and new JS syntax) into basic JS (according to the 
‘production’ property in package.json)

– Webpack packs and minimizes all JS code into a single file

– Prepares an index.html that loads all the JS code

• The content of the “dist” folder is self-contained and may be moved to 
the deployment server

• All debugging capabilities are removed

Applicazioni Web I - Web Applications I - 2024/2025
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Check the Build Results

• You may test the built app by running npm run preview

• The vite’s preview command will launch a local static web server

– serving the files from “dist” at http://localhost:4173
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http://localhost:4173/
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Hosting The Build in Express

• cd express-api-server

• cp –r ..../react-app/dist .

• Define a static route in server.js

• In the application, you may call APIs locally

– fetch('/api/questions')...
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app.use(express.static('./build'));

app.get('/', (req,res)=> {res.redirect('/index.html')} );
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Hosting the Build in Online Services

• Different online services allow free hosting of static websites, e.g.,

– GitHub Pages, GitLab Pages, Firebase, Vercel, etc.

• Some of them are free or have a free tier.

• To host the build on such services, refer to the guide at 
https://vitejs.dev/guide/static-deploy.html.
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https://vitejs.dev/guide/static-deploy.html
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Pros and Cons

• Simple to deploy the final application (anywhere)

• May include the application inside the API server (in production, too)

• The JS code runs on every browser (thanks to polyfills and transpiling)

• The build cannot be directly modified

• Need a save/build/copy/reload cycle for every modification
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Other “Magic” By Webpack

• Packing of all imported modules

• Bundling of Assets

– Images

– CSS files

• CSS Modules
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In Development Mode…

• npm run dev runs the “Webpack development server” (WDS)

• All our code is transpiled and packed into a bundle.js that is 
automatically inserted into index.html

– Contains all our code, plus React, plus imported modules

– Also handles imports of non-JS files

• bundle.js does not exist – it’s kept in-memory by the WDS

• Sets up hot-reloading and synchronized error messages (via websockets)
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Imports in Webpack

• import logo from './logo.svg';

• import logo from './logo.png';
– Will include the image reference inside the bundle (placed under static/media)

– Small files are rendered inline

• import './Button.css';
– This component will use these CSS declarations

– All CSS will be concatenated into a single file, but here we are stating the dependency

• import styles from './Button.module.css';
– Files ending with .module.css are CSS modules

– Styles may be applied with className={styles.primary}

– Class names are renamed to be unique: no conflict with other Components’ styles

Applicazioni Web I - Web Applications I - 2024/2025
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Why Use Imports

• Scripts and stylesheets get minified and bundled together to avoid extra 
network requests.

• Missing files cause compilation errors instead of 404 errors for your 
users.

• Result filenames include content hashes, so you do not need to worry 
about browsers caching their old versions.

• They are an optional mechanism. “Traditional” loading (with link) still 
works, if you save your files in the public directory

Applicazioni Web I - Web Applications I - 2024/2025
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License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format 
– Adapt — remix, transform, and build upon the material 
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were 

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or 
your use. 

– NonCommercial — You may not use the material for commercial purposes. 
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions 

under the same license as the original. 
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict 

others from doing anything the license permits. 

• https://creativecommons.org/licenses/by-nc-sa/4.0/ 
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https://creativecommons.org/licenses/by-nc-sa/4.0/
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