
Client-Server
Interaction in React
Connecting React to HTTP APIs

Fulvio Corno

Luigi De Russis

Applicazioni Web I - Web Applications I - 2024/2025

2

Outline

• The “two servers” problem

– Two servers + CORS → we will use this, in the course

– Build + Express (single server)

– Also: Understanding Build (webpack, imports, …)

Applicazioni Web I - Web Applications I - 2024/2025

3

THE “TWO SERVERS” PROBLEM

A Client and a Server walk into a bar…

Applicazioni Web I - Web Applications I - 2024/2025

https://www.robinwieruch.de/react-fetching-
data

Full Stack React, Chapter “Using Webpack with
Create React App”

https://www.robinwieruch.de/react-fetching-data
https://www.robinwieruch.de/react-fetching-data

4

Conceptual Architecture

Applicazioni Web I - Web Applications I - 2024/2025

fetch()

React
Application

React
Application
Server

Initial
HTTP
requests

Browser

React Development Server

React Components

React Components

React Server

npm run dev

Does NOT run Express
Does NOT let you

write your own routes

5

Conceptual Architecture

Applicazioni Web I - Web Applications I - 2024/2025

fetch() Express server application

app.get/.post route

JSON/HTTP

React
Application

REST
API
Server

Browser

React Components

API Server node index.mjs

Will NOT understand JSX
Does NOT know React

Components

6

Conceptual Architecture

Applicazioni Web I - Web Applications I - 2024/2025

fetch() Express server application

app.get/.post route

React
Application

REST
API
Server

React
Application
Server

Initial
HTTP
requests

Browser

React Development Server

React Components

React Components

React Server

API Server

JSON/HTTP

7

Issues

• Deployment

– One-server-does-all or two-separate-servers?

– Development vs. Production trade-off
• convenience/debug/turnaround time vs performance/security

– Cross-Origin security limitations

• Opportunities

– Separate the load

– Use any API Server (even 3rd party ones)

Applicazioni Web I - Web Applications I - 2024/2025

8

Express
http://localhost:3000

Two Possible Solutions

Applicazioni Web I - Web Applications I - 2024/2025

HTTP API Server (Express)
http://localhost:3000 + Routes

React Application Server
http://localhost:5173

Browser

HTTP API Server
Routes

React Application
Bundle

Static files

Browser

CORS

Two independent servers +
CORS configuration

Build a production bundle
and host it in a web server

9

RUNNING TWO SEPARATE SERVERS

Side-by-side deployment

Applicazioni Web I - Web Applications I - 2024/2025

https://www.newline.co/fullstack-
react/articles/using-create-react-app-with-a-
server/

Full Stack React, Chapter “Using Webpack with
Create React App / Using Create React App with
an API server”

We will use this, in
the course

https://www.newline.co/fullstack-react/articles/using-create-react-app-with-a-server/
https://www.newline.co/fullstack-react/articles/using-create-react-app-with-a-server/
https://www.newline.co/fullstack-react/articles/using-create-react-app-with-a-server/

10

Double-Server Setup

• React Web Server and HTTP API
server are hosted separately

– Different hosts, and/or

– Different ports

• The browser:

– Receives the React application

– Directs the API requests to the API
server

Applicazioni Web I - Web Applications I - 2024/2025

11

Double-Server Setup

• Must run two web servers

– React project: npm run dev

– Express project: node index.js

– Two projects, in two different
directories (or different servers)

• Problem: handle CORS

– Cross-Origin Resource Sharing

– Default security policy prevents
loading data from other servers

– Details not discussed here

Applicazioni Web I - Web Applications I - 2024/2025

12

Double-Server Setup

• React Web Server and HTTP API
server are hosted separately

– Different hosts, and/or

– Different ports

• The browser:

– Receives the React application

– Directs the API requests to the API
server

Applicazioni Web I - Web Applications I - 2024/2025

13

Advantages and Disadvantages

• Servers are easy to deploy

• Scalable solution: requests are
sent to the appropriate server

• Only possible configuration if the
HTTP API is provided by a third
party
– Public APIs

• Need to configure cross-origin
resource sharing (CORS) on API
server

• Requires using absolute URLs to
access APIs

• Wrongly configured CORS might
be a security risk (undesired
access to APIs from e.g., mock
websites)

Applicazioni Web I - Web Applications I - 2024/2025

14

How To Configure

• Configure CORS on API server for development

• In production mode, use different domains for React and API servers, NEVER
allow CORS requests from any origin, always specify origin
– See also https://github.blog/security/application-security/localhost-dangers-cors-and-dns-

rebinding/

Applicazioni Web I - Web Applications I - 2024/2025

// index.mjs (node express server)

import cors from 'cors'; // npm install cors

//Enable All CORS Requests (for this server)

app.use(cors());

//Use ONLY for development, otherwise restrict domain

https://github.blog/security/application-security/localhost-dangers-cors-and-dns-rebinding/
https://github.blog/security/application-security/localhost-dangers-cors-and-dns-rebinding/

15

Example

API.mjs in the React Application
const APIURL=new URL('http://localhost:3000');

async function getCourses() {
return fetch(new URL('/courses', APIURL))
.then((response)=>{
if(response.ok) {

return response.json() ;
} else {

throw response.statusText;
}

})
.catch((error)=>{
throw error;

});
}

index.mjs for the API Server
import express from 'express';
import cors from 'cors';

const app = express();
const port = 3000;
app.use(cors());

app.get('/courses', (req, res) => {
 dao.listCourses()
 .then((courses) => res.json(courses))
 .catch((dbErrorObj)=>
 res.status(503)
 .json(dbErrorObj));
});

app.listen(port, () => console.log(`Example app
listening at http://localhost:${port}`));

Applicazioni Web I - Web Applications I - 2024/2025

Called in useEffect()

Calls dao.mjs

16

DEPLOYING A BUILD INSIDE A SERVER

Packing and moving the React application into any web server

Applicazioni Web I - Web Applications I - 2024/2025

https://vitejs.dev/guide/static-deploy.html

https://vitejs.dev/guide/static-deploy.html

17

Deploying the React Bundle

• React does not need to run in the
development server

• npm run build will create a
“production bundle” with all the
contents needed to run the
application

• This bundle is composed of static
files (html, js, assets) and may be
served by any webserver (including

Apache, nginx, express, php, …)

Applicazioni Web I - Web Applications I - 2024/2025

18

Build Command

Applicazioni Web I - Web Applications I - 2024/2025

npm run build

Creates everything
under ./dist

https://vitejs.dev/guide/stat
ic-deploy.html

https://vitejs.dev/guide/static-deploy.html
https://vitejs.dev/guide/static-deploy.html

19

What Does “build” Do?

• Most of the work in “building” the static application is done by Babel
and Webpack

– Babel translates all JSX (and new JS syntax) into basic JS (according to the
‘production’ property in package.json)

– Webpack packs and minimizes all JS code into a single file

– Prepares an index.html that loads all the JS code

• The content of the “dist” folder is self-contained and may be moved to
the deployment server

• All debugging capabilities are removed

Applicazioni Web I - Web Applications I - 2024/2025

20

Check the Build Results

• You may test the built app by running npm run preview

• The vite’s preview command will launch a local static web server

– serving the files from “dist” at http://localhost:4173

Applicazioni Web I - Web Applications I - 2024/2025

http://localhost:4173/

21

Hosting The Build in Express

• cd express-api-server

• cp –r/react-app/dist .

• Define a static route in server.js

• In the application, you may call APIs locally

– fetch('/api/questions')...

Applicazioni Web I - Web Applications I - 2024/2025

app.use(express.static('./build'));

app.get('/', (req,res)=> {res.redirect('/index.html')});

22

Hosting the Build in Online Services

• Different online services allow free hosting of static websites, e.g.,

– GitHub Pages, GitLab Pages, Firebase, Vercel, etc.

• Some of them are free or have a free tier.

• To host the build on such services, refer to the guide at
https://vitejs.dev/guide/static-deploy.html.

Applicazioni Web I - Web Applications I - 2024/2025

https://vitejs.dev/guide/static-deploy.html

23

Pros and Cons

• Simple to deploy the final application (anywhere)

• May include the application inside the API server (in production, too)

• The JS code runs on every browser (thanks to polyfills and transpiling)

• The build cannot be directly modified

• Need a save/build/copy/reload cycle for every modification

Applicazioni Web I - Web Applications I - 2024/2025

24

Other “Magic” By Webpack

• Packing of all imported modules

• Bundling of Assets

– Images

– CSS files

• CSS Modules

Applicazioni Web I - Web Applications I - 2024/2025

25

In Development Mode…

• npm run dev runs the “Webpack development server” (WDS)

• All our code is transpiled and packed into a bundle.js that is
automatically inserted into index.html

– Contains all our code, plus React, plus imported modules

– Also handles imports of non-JS files

• bundle.js does not exist – it’s kept in-memory by the WDS

• Sets up hot-reloading and synchronized error messages (via websockets)

Applicazioni Web I - Web Applications I - 2024/2025

26

Imports in Webpack

• import logo from './logo.svg';

• import logo from './logo.png';
– Will include the image reference inside the bundle (placed under static/media)

– Small files are rendered inline

• import './Button.css';
– This component will use these CSS declarations

– All CSS will be concatenated into a single file, but here we are stating the dependency

• import styles from './Button.module.css';
– Files ending with .module.css are CSS modules

– Styles may be applied with className={styles.primary}

– Class names are renamed to be unique: no conflict with other Components’ styles

Applicazioni Web I - Web Applications I - 2024/2025

27

Why Use Imports

• Scripts and stylesheets get minified and bundled together to avoid extra
network requests.

• Missing files cause compilation errors instead of 404 errors for your
users.

• Result filenames include content hashes, so you do not need to worry
about browsers caching their old versions.

• They are an optional mechanism. “Traditional” loading (with link) still
works, if you save your files in the public directory

Applicazioni Web I - Web Applications I - 2024/2025

28

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2024/2025

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1: Client-Server Interaction in React
	Slide 2: Outline
	Slide 3: The “two servers” problem
	Slide 4: Conceptual Architecture
	Slide 5: Conceptual Architecture
	Slide 6: Conceptual Architecture
	Slide 7: Issues
	Slide 8: Two Possible Solutions
	Slide 9: Running Two Separate Servers
	Slide 10: Double-Server Setup
	Slide 11: Double-Server Setup
	Slide 12: Double-Server Setup
	Slide 13: Advantages and Disadvantages
	Slide 14: How To Configure
	Slide 15: Example
	Slide 16: Deploying a Build Inside a Server
	Slide 17: Deploying the React Bundle
	Slide 18: Build Command
	Slide 19: What Does “build” Do?
	Slide 20: Check the Build Results
	Slide 21: Hosting The Build in Express
	Slide 22: Hosting the Build in Online Services
	Slide 23: Pros and Cons
	Slide 24: Other “Magic” By Webpack
	Slide 25: In Development Mode…
	Slide 26: Imports in Webpack
	Slide 27: Why Use Imports
	Slide 28: License

